Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(40): 34172-34183, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205674

RESUMEN

Exploring the state-of-the-art heterogeneous catalysts has been a general concern for sustainable and clean energy. Here, Pt-embedded CuO x-CeO2 multicore-shell (Pt/CuO x-CeO2 MS) composites are fabricated at room temperature via a one-pot and template-free procedure for catalyzing CO oxidation, a classical probe reaction, showing a volcano-shaped relationship between the composition and catalytic activity. We experimentally unravel that the Pt/CuO x-CeO2 MS composites are derived from an interfacial autoredox process, where Pt nanoparticles (NPs) are in situ encapsulated by self-assembled ceria nanospheres with CuO x clusters adhered through deposition/precipitation-calcination process. Only Cu-O and Pt-Pt coordination structures are determined for CuO x clusters and Pt NPs in Pt/CuO x-CeO2 MS, respectively. Importantly, the close vicinity between Pt and CeO2 benefits to more oxygen vacancies in CeO2 counterparts and results in thin oxide layers on Pt NPs. Meanwhile, the introduction of CuO x clusters is crucial for triggering synergistic catalysis, which leads to high resistance to aggregation of Pt NPs and improvement of catalytic performance. In CO oxidation reaction, both Ptδ+-CO and Cu+-CO can act as active sites during CO adsorption and activation. Nonetheless, redundant content of Pt or Cu will induce a strongly bound Pt-O-Ce or Cu-[O x]-Ce structures in air-calcinated Pt/CuO x-CeO2 MS composites, respectively, which are both deleterious to catalytic reactivity. As a result, the composition-dependent catalytic activity and superior durability of Pt/CuO x-CeO2 MS composites toward CO oxidation reaction are achieved. This work should be instructive for fabricating desirable multicomponent catalysts composed of noble metal and bimetallic oxide composites for diverse heterogeneous catalysis.

2.
J Am Chem Soc ; 139(51): 18492-18495, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29231730

RESUMEN

Core/shell nanostructure is versatile for improving or integrating diverse functions, yet it is still limited to homeomorphism with isomorphic core and shell structure. Here, we delineate a selective cation exchange strategy to construct lanthanide core/shell nanoparticles with dissimilar structure. Hexagonal NaLnF4, a typical photon conversion material, was selected to grow cubic CaF2 shell to protect surface exposed Ln3+. Preferential cation exchange between Ca2+ and Na+ triggered the surface hexagonal-to-cubic structure evolution, which remediated the large barrier for heteroepitaxy of monocrystalline CaF2 shell. The heterostructured CaF2 shell leads to greatly enhanced upconversion emission with increased absolute quantum yield from 0.2% to 3.7%. Moreover, it is advantageous in suppressing the interfacial diffusion of Ln3+, as well as the leakage of Ln3+ from nanoparticle to aqueous system. These findings open up a new avenue for fabricating heterostructured core/shell nanoparticles, and are instructive for modulating various properties.

3.
ACS Nano ; 11(4): 3642-3650, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28350963

RESUMEN

Magnetic resonance imaging contrast agents with both significantly enhanced relaxivity and minimal safety risk are of great importance for sensitive clinical diagnosis, but have rarely been reported. Herein, we present a simple strategy to improve relaxivity by introducing surface ligands with strong interaction to water molecules. As a proof of concept, NaGdF4 nanoparticles (NPs) capped by poly(acrylic acid) (PAA) show superior relaxivity to those capped by polyethylenimine and polyethylene glycol, which is attributed to the strong hydrogen-bond capacity of PAA to water molecules as revealed by theoretical calculation. Furthermore, benefiting from PAA and ultrasmall particle size, Gd-dots, namely PAA-capped GdOF NPs (2.1 ± 0.2 nm), are developed as a high-performance contrast agent, with a remarkable ionic relaxivity of ∼75 mM-1 s-1 in albumin solution at 0.5 T. These Gd-dots also exhibit efficient renal clearance with <3% of injected amount left 12 h post-injection. Ultrasensitive MR renography achieved with Gd-dots strongly suggests their great potential for practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA