Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Talanta ; 276: 126296, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795648

RESUMEN

Highly stable and multicolor photoluminescent (PL) quantum dots (QDs) have attracted widespread attention as ideal probe materials in the field of in vitro diagnostics (IVD), especially the fluorescence-linked immunosorbent assay (FLISA), due to their advantages of high-throughput, high stability, and high sensitivity. However, the size of QDs as fluorescent probes have significant effects on antigen-antibody performance. Therefore, it is critical to design suitable QDs for obtain excellent quantitative detection-based biosensors. In this paper, we prepared different sizes of aqueous QDs (30 nm, 116 nm, 219 nm, and 320 nm) as fluorescent probes to optimize the competitive FLISA platform. The SARS-CoV-2 neutralizing antibody (NTAB) assay was used as an example, and it was found that the size of the QDs has a significant impact on the antigen-antibody binding efficiency and detection sensitivity in competitive FLISA platform. The results showed that these QD nanobeads (QBs, ∼219 nm) could be used as a labeled probe for competitive FLISA, with half-maximal inhibitory concentration (IC50) of 1.34 ng/mL and limit of detection (LOD) of 0.21 pg/mL for NTAB detection. More importantly, the results showed good specificity and accuracy, and the QB219 probe was able to efficiently bind NTAB without interference from other substances in the serum. Given the above advantages, the nanoprobe material (∼200 nm) offers considerable potential as a competitive FLISA platform in the field of IVD.


Asunto(s)
Puntos Cuánticos , SARS-CoV-2 , Puntos Cuánticos/química , Humanos , SARS-CoV-2/inmunología , Límite de Detección , Colorantes Fluorescentes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Tamaño de la Partícula , COVID-19/diagnóstico , COVID-19/sangre , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Técnicas Biosensibles/métodos , Fluorescencia
2.
Acta Biomater ; 180: 394-406, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615810

RESUMEN

The construction and optimization of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) functions remain challenging. In this study, we aimed to design and synthesize four donor-acceptor (D-A) type aggregation-induced emission molecules: PSI, TPSI, PSSI, and TPSSI. We employed phenothiazine as an electron donor and 1,3-bis(dicyanomethylidene)indan as a strong electron acceptor in the synthesis process. Among them, TPSSI exhibited efficient type I reactive oxygen species generation, high photothermal conversion efficiency (45.44 %), and near-infrared emission. These observations can be attributed to the introduction of a triphenylamine electron donor group and a thiophene unit, which resulted in increased D-A strengths, a reduced singlet-triplet energy gap, and increased free intramolecular motion. TPSSI was loaded into bovine serum albumin to prepare biocompatible TPSSI nanoparticles (NPs). Our results have indicated that TPSSI NPs can target lipid droplets with negligible dark toxicity and can efficiently generate O2•- in hypoxic tumor environments. Moreover, TPSSI NPs selectively targeted 4T1 tumor tissues and exhibited a good PDT-PTT synergistic effect in vitro and in vivo. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technologies. STATEMENT OF SIGNIFICANCE: The construction of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy, and photothermal therapy functions, and its optimization remain challenging. In this study, we construct four donor-acceptor aggregation-induced emission molecules using phenothiazine as an electron donor and 1,3-Bis(dicyanomethylidene)indan as a strong electron acceptor. By optimizing the molecular structure, an integrated phototherapy agent with fluorescence imaging ability and high photodynamic / photothermal therapy performance was prepared. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technology.


Asunto(s)
Fotoquimioterapia , Terapia Fototérmica , Animales , Fotoquimioterapia/métodos , Ratones , Femenino , Ratones Endogámicos BALB C , Línea Celular Tumoral , Rayos Infrarrojos , Nanopartículas/química , Nanopartículas/uso terapéutico
3.
Langmuir ; 40(8): 4447-4459, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38349871

RESUMEN

High-sensitivity detection of biomarkers is of great significance to improve the accuracy of disease diagnosis and the rate of occult disease diagnosis. Using a substrate modification and two-color quantum dot (QD) nanobeads (QBs), we have developed a dual fluorescence signal-enhancement immunosensor for sensitive, simultaneous detection of interleukin 6 (IL-6) and procalcitonin (PCT) at low volumes (∼20 µL). First, the QBs compatible with QDs with different surface ligands were prepared by optimizing surfactants based on the microemulsion method. Through the use of a fluorescence-linked immunosorbent assay (FLISA), the feasibility of a dual signal-enhancement immunosensor was verified, and a 5-fold enhancement of fluorescence intensity was achieved after the directional coating of the antibodies on sulfhydryl functionalization (-SH) substrates and the preparation of QBs by using a polymer and silica double-protection method. Next, a simple polydimethylsiloxane (HS-PDMS) immunosensor with a low volume consumption was prepared. Under optimal conditions, we achieved the simultaneous detection of IL-6 and PCT with a linear range of 0.05-50 ng/mL, and the limit of detection (LOD) was 24 and 32 pg/mL, respectively. The result is comparable to two-color QBs-FLISA with a sulfhydryl microplate, even though only 20% of its volume was used. Thus, the dual fluorescence signal-enhancement HS-PDMS immunosensor offers the capability of early microvolume diagnosis of diseases, while the detection of inflammatory factors is clinically important for assisting disease diagnosis and determining disease progression.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Polipéptido alfa Relacionado con Calcitonina , Interleucina-6 , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Límite de Detección
4.
Inorg Chem ; 63(10): 4604-4613, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38395777

RESUMEN

Nontoxic, highly sensitive InP quantum dot (QD) fluorescent immunoassay probes are promising biomedical detection modalities due to their unique properties. However, InP-based QDs are prone to surface oxidation, and the stability of InP QD-based probes in biocompatible environments remains a crucial challenge. Although the thick shell can provide some protection during the phase transfer process of hydrophobic QDs, the photoluminescence quantum yield (PLQY) is generally decreased because of the contradiction between lattice stress relaxation and thick shell growth. Herein, we developed thick-shell InP-based core/shell QDs by inserting a ZnSeS alloy layer. The ternary ZnSeS intermediate shell could effectively facilitate lattice stress relaxation and passivate the defect states. The synthesized InP/ZnSe/ZnSeS/ZnS core/alloy shell/shell QDs (CAS-InP QDs) with nanostructure tailoring revealed a larger size, high PLQY (90%), and high optical stability. After amphiphilic polymer encapsulation, the aqueous CAS-InP QDs presented almost constant fluorescence attenuation and stable PL intensity under different temperatures, UV radiation, and pH solutions. The CAS-InP QDs were excellent labels of the fluorescence-linked immunosorbent assay (FLISA) for detecting C-reactive protein (CRP). The biotin-streptavidin (Bio-SA) system was first introduced in the FLISA to further improve the sensitivity, and the CAS-InP QDs-based SA-Bio sandwich FLISA realized the detection of CRP with an impressive limit of detection (LOD) of 0.83 ng/mL. It is believed that the stable and sensitive InP QD fluorescent probes will drive the rapid development of future eco-friendly, cost-effective, and sensitive in vitro diagnostic kits.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Biotina , Estreptavidina , Colorantes Fluorescentes , Aleaciones
5.
Talanta ; 269: 125416, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000240

RESUMEN

The excellent optical properties of quantum dots (QDs) make them as an ideal fluorescent probe for multiplexed detection, however, the interference between different emission spectra, the dependence of excitation wavelengths, and the sharp decrease of quantum yield (QY) during surface modification are issues that cannot be ignored. Herein, a dual protection scheme of polymer and silica was proposed to prepare high-quality three-color QDs nanobeads using QDs with different ligands. In comparison with single-core QDs, the fluorescence signal of the prepared QD nanobeads (QBs) is increased by more than 1,000 times and has better stability. Considering the excitation efficiency of QDs, we tailor three-color QBs as fluorescent probes based on fluorescence-linked immunosorbent assays (tQBs-FLISA) to detect multiple inflammatory biomarkers simultaneously with tunable detection ranges. This resulted in highly sensitive detection of three inflammatory biomarkers in comparison to the single-core QD-FLISA, the sensitivities of C-reactive protein (CRP), serum amyloid A (SAA), and procalcitonin (PCT) were increased by 16-fold, 19-fold, and 5-fold, respectively, to 0.48 ng/mL, 0.42 ng/mL, and 10 pg/mL. Furthermore, the tQBs-FLISA showed good accuracy without interference from common serum factors. In this strategy, a three-color QBs suitable for multilevel sensitivity and tunable detection range was tailored using the versatile polymer and silica dual protection method, building high-performance immunosensor for in vitro diagnostics (IVD).


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Técnicas Biosensibles/métodos , Inmunoensayo , Dióxido de Silicio , Biomarcadores , Polímeros
6.
Small ; 20(24): e2306859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155356

RESUMEN

Solution-processed and efficient yellow quantum dot light-emitting diodes (QLEDs) are considered key optoelectronic devices for lighting, display, and signal indication. However, limited synthesis routes for yellow quantum dots (QDs), combined with inferior stress-relaxation of the core-shell interface, pose challenges to their commercialization. Herein, a nanostructure tailoring strategy for high-quality yellow CdZnSe/ZnSe/ZnS core/shell QDs using a "stepwise high-temperature nucleation-shell growth" method is introduced. The synthesized CdZnSe-based QDs effectively smoothed the release stress of the core-shell interface and revealed a near-unit photoluminescence quantum yield, with nonblinking behavior and matched energy level, which accelerated radiative recombination and charge injection balance for device operation. Consequently, the yellow CdZnSe-based QLEDs exhibited a peak external quantum efficiency of 23.7%, a maximum luminance of 686 050 cd m-2, and a current efficiency of 103.2 cd A-1, along with an operating half-lifetime of 428 523 h at 100 cd m-2. To the best of the knowledge, the luminance and operational stability of the device are found to be the highest values reported for yellow LEDs. Moreover, devices with electroluminescence (EL) peaks at 570-605 nm exhibited excellent EQEs, surpassing 20%. The work is expected to significantly push the development of RGBY-based display panels and white LEDs.

7.
Nat Nanotechnol ; 18(10): 1168-1174, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37474685

RESUMEN

Minimizing heat accumulation is essential to prolonging the operational lifetime of quantum dot light-emitting diodes (QD-LEDs). Reducing heat generation at the source is the ideal solution, which requires high brightness and quantum efficiency at low driving voltages. Here we propose to enhance the brightness of QD-LEDs at low driving voltages by using a monolayer of large QDs to reduce the packing number in the emitting layer. This strategy allows us to achieve a higher charge population per QD for a given number of charges without charge leakage, enabling enhanced quasi-Fermi-level splitting and brightness at low driving voltage. Due to the minimized heat generation, these LEDs show a high power conversion efficiency of 23% and a T95 operation lifetime (the time for the luminance to decrease to 95% of the initial value) of more than 48,000 h at 1,000 cd m-2.

8.
Anal Chim Acta ; 1265: 341336, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37230576

RESUMEN

This study aimed to construct a novel DNA triplex molecular switch modified with DNA tetrahedron (DTMS-DT) with sensitive response to extracellular pH using a DNA tetrahedron as the anchoring unit and DNA triplex as the response unit. The results showed that the DTMS-DT had desirable pH sensitivity, excellent reversibility, outstanding anti-interference ability, and good biocompatibility. Confocal laser scanning microscopy suggested that the DTMS-DT could not only be stably anchored on the cell membrane but also be employed to dynamically monitor the change in extracellular pH. Compared with the reported probes for extracellular pH monitoring, the designed DNA tetrahedron-mediated triplex molecular switch exhibited higher cell surface stability and brought the pH-responsive unit closer to the cell membrane surface, making the results more reliable. In general, developing the DNA tetrahedron-based DNA triplex molecular switch is helpful for understanding and illustrating the pH dependent cell behaviors and disease diagnostics.


Asunto(s)
ADN , Concentración de Iones de Hidrógeno , ADN/química , Membrana Celular/metabolismo , Conformación de Ácido Nucleico
9.
Nanoscale ; 15(12): 5560-5578, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36866747

RESUMEN

Fluorescence immunoassays have been given considerable attention among the quantitative detection methods in the clinical medicine and food safety testing fields. In particular, semiconductor quantum dots (QDs) have become ideal fluorescent probes for highly sensitive and multiplexed detection due to their unique photophysical properties, and the QD fluorescence-linked immunosorbent assay (FLISA) with high sensitivity, high accuracy, and high throughput has been greatly developed recently. In this manuscript, the advantages of applying QDs to FLISA platforms and some strategies for their application to in vitro diagnostics and food safety are discussed. Given the rapid development of this field, we classify these strategies based on the combination of QD types and detection targets, including traditional QDs or QD micro/nano-spheres-FLISA, and multiple FLISA platforms. In addition, some new sensors based on the QD-FLISA are introduced; this is one of the hot spots in this field. The current focus and future direction of QD-FLISA are also discussed, which provides important guidance for the further development of FLISA.


Asunto(s)
Inmunoadsorbentes , Puntos Cuánticos , Fluorescencia
10.
Inorg Chem ; 62(8): 3474-3484, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36789761

RESUMEN

CuInS2 quantum dots (CIS QDs) are considered to be promising alternatives for Cd-based QDs in the fields of biology and medicine. However, high-quality hydrophobic CIS QDs are difficult to be transferred to water due to their 1-dodecylmercaptan (DDT) ligands. Therefore, the fluorescence and stability of the prepared aqueous CIS QDs is not enough to meet the requirement for sensitive detection. Here, as large as 13 nm CuInZnS/ZnS QDs with DDT ligands were first synthesized, and then, CuInZnS/ZnS microbeads (QBs) containing thousands of QDs were successfully fabricated by a two-step approach of emulsion-solvent evaporation and surfactant substitution. Through emulsion-solvent evaporation, the CuInZnS/ZnS QDs formed microbeads in the microemulsion with dodecyl trimethylammonium bromide (DTAB), and the Förster resonance energy transfer (FRET) has been effectively overcome. Then, CO-520 was introduced to substitute DTAB to improve the stability and water solubility. Lastly, the microbeads were coated with a SiO2 shell and carboxylated. Subsequently, the constructed QBs (∼210 nm) were used as labels in a fluorescence immunosorbent assay (FLISA) for quantitative detection of heart type fatty acid binding protein (H-FABP), and the limit of detection was 0.48 ng mL-1, which indicated a greatly improved detection sensitivity compared to that of the Cd-free QDs. The highly fluorescent and stable CuInZnS/ZnS QBs will have great application prospects in many biological fields.


Asunto(s)
Puntos Cuánticos , Emulsiones , Microesferas , Puntos Cuánticos/química , Dióxido de Silicio , Solventes , Sulfuros/química , Tensoactivos , Agua/química , Compuestos de Zinc/química
11.
Anal Chim Acta ; 1237: 340534, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36442931

RESUMEN

Quantum dots (QDs) have been considered as the promising fluorescent labeling material, which is expected to meet the requirement of high-sensitivity detection in clinical diagnostics. Some common metal ions are known to affect the stability and fluorescence properties of QDs, but scarcely any systematic research has been done about their impacts on QD-based bio-detection. By evaluating the effect of Ca2+ metal ions on the properties of aqueous QDs, a new metal ion-QD fluorescence signal amplification sensor (i.e., Ca2+-QD-fluorescence-linked immunosorbent assay, Ca2+-QD-FLISA) has been developed for the detection of inflammatory biomarkers with high sensitivity. Compared with the common QD-FLISA, the detection sensitivity for CRP of Ca2+-QD-FLISA was improved by a 4-fold of magnitude to 0.23 ng/mL, and this assay showed good selectivity, high accuracy, and excellent repeatability. The versatility of the QD-FLISA method were also validated by using different metal ion-QD probes (Ca2+, Mg2+, Ba2+, Fe2+, and Mn2+) to detect CRP, serum amyloid A (SAA), and procalcitonin (PCT). The significant improvement in detection sensitivity was achieved due to the crosslinking of aqueous QDs by Ca2+ ions to enhance fluorescence and at the same time promote antigen-antibody binding efficiency. The present study illustrates the versatility of metal ion-QD-FLISA as a simple and effective method to detect a wide range of biomarkers with high sensitivity and accuracy.


Asunto(s)
Puntos Cuánticos , Iones , Polipéptido alfa Relacionado con Calcitonina , Biomarcadores , Inmunoadsorbentes
12.
Front Chem ; 10: 1102514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583153

RESUMEN

Harnessing environment-friendly and low-cost multinary Cu-In-Zn-S quantum dots (QDs) as emitters for light-emitting diodes (LEDs) has attracted great attention for display and lighting application. However, suboptimal QD structure is a huge obstacle, which results in serious non-radiative recombination and efficiency roll-off. Herein, we synthesized structure-tailored Cu-In-Zn-S/ZnS//ZnS QDs by improving the reactivity of shell growth by 2-ethylhexanoic acid (EHA) ligands. The EHA-assisted shell growth can boost an extended alloyed layer at the core-shell interface and a smoothed confinement barrier, which effectively passivate the interface defects and suppress Förster resonance energy transfer (FRET) process. These synthesized QDs display a bright photoluminescence emission (quantum yield of 83%) and a larger size of 8.4 nm. Moreover, the resulting LEDs based on the EHA-assisted QDs exhibit a maximum luminance of 8074 cd/m2, and a current efficiency of 7.3 cd/A with a low efficiency roll-off. Our results highlight a remarkable ligand strategy to tailor the QD structure for high performance QD-based LEDs.

13.
Anal Chim Acta ; 1229: 340367, 2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36156225

RESUMEN

The development of functionalized surfaces with low non-specific adsorption is important for their biomedical applications. To inhibit non-specific adsorption on glass substrate, we designed a novel optical biochip by modifying a layer of dense negatively charged film (SO32-) on its substrate surface via self-assembly. Compared with the untreated glass substrate, it reduced the adsorption by about 300-fold or 400-fold by poly (styrene sulfonic acid) sodium salt (PSS), or meso-tetra (4-sulfonatophenyl) porphine dihydrochloride (TSPP) on individually the modified glass substrate. Considering the effect of fluorescence resonance energy transfer (FRET) between TSPP and the QDs in solution by mixing, a strategy of 2-layer of TSPP followed by 4-layer of PSS was designed to modify the glass for preparing biochips. Under the optimized conditions, the biochip on functionalized glass substrate co-treated with TSPP and PSS realized the sensitive quantitative detection of C-reactive protein (CRP) based on a quantum dot fluorescence immunosorbent assay (QD-FLISA). The limit of detection (LOD) for CRP achieved 0.69 ng/mL with the range of 1-1,000 ng/mL using TSPP and PSS co-treated glass substrate surface, which was respectively about 1.9-fold and 7.5-fold more sensitive to the PSS-modified biochip and the TSPP-modified biochip. This work demonstrated an effective and convenient strategy to obtain biochips with low non-specific adsorption properties on functionalized surfaces, thus providing a new approach for creating ultra-high sensitivity microchannels or microarrays on glass substrates.


Asunto(s)
Inmunoadsorbentes , Puntos Cuánticos , Adsorción , Proteína C-Reactiva , Inmunoensayo , Puntos Cuánticos/química , Sodio , Estirenos , Ácidos Sulfónicos
14.
Langmuir ; 38(16): 4969-4978, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412839

RESUMEN

The surface functionalization of quantum dots (QDs) is essential for their application as a label material in a biological field. Here, a protein surface functionalization approach was introduced to combine with silica encapsulation for the sustainable and stable synthesis of QDs nanobeads for biomarker detection. The formation of QDs nanobeads was achieved by multiple mercapto groups in bovine serum albumin (BSA) macromolecules as multidentate ligands to replace hydrophobic ligands on the surface of QDs and decompression. The resulting QDs nanobeads exhibited 20 times more photoluminescence than the corresponding hydrophobic QDs and presented excellent stability under physiological conditions due to the protection of BSA and silica. The nanobeads served as a robust signal-generating reagent to construct the lateral flow immunoassay (LFIA) biosensor for the detection of glycosylated hemoglobin (HbA1c). The concentration of HbA1c was determined within 10 min with high specificity using only 60 µL of whole blood samples collected clinically. The nanobeads-based LFIA biosensor exhibited linear detection of HbA1c from 4.2% to 13.6%. The accuracy and stability of this approach in clinical utility was demonstrated by the detection of HbA1c after a long-term storage of test strips. This protein surface modification technology provides a new way for improving the biological properties of QDs in clinical diagnosis.


Asunto(s)
Puntos Cuánticos , Hemoglobina Glucada , Ligandos , Puntos Cuánticos/química , Albúmina Sérica Bovina/química , Dióxido de Silicio/química
15.
Exploration (Beijing) ; 2(4): 20220082, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37325608

RESUMEN

InP quantum dots (QDs) are a promising and environment-friendly alternative to Cd-based QDs for in vitro diagnostics and bioimaging applications. However, their poor fluorescence and stability severely limit their biological applications. Herein, we synthesize bright (∼100%) and stable InP-based core/shell QDs by using cost-effective and low-toxic phosphorus source, and then aqueous InP QDs are prepared with quantum yield over 80% by shell engineering. The immunoassay of alpha-fetoprotein can be detected in the widest analytical range of 1-1000 ng ml-1 and the limit of detection of 0.58 ng ml-1 by using those InP QDs-based fluorescent probes, making it the best-performing heavy metal-free detection reported so far, comparable to state-of-the-art Cd-QDs-based probes. Furthermore, the high-quality aqueous InP QDs exhibit excellent performance in specific labeling of liver cancer cells and in vivo tumor-targeted imaging of live mice. Overall, the present work demonstrates the great potential of novel high-quality Cd-free InP QDs in cancer diagnosis and image-guided surgery.

16.
Int J Nanomedicine ; 16: 7023-7033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703225

RESUMEN

PURPOSE: Gold nanoparticles (AuNPs) with good physical and biological properties are often used in medicine, diagnostics, food, and similar industries. This paper explored an AuNPs drug delivery system that had good target selectivity for folate-receptor overexpressing cells to induce apoptosis. METHODS: A novel drug delivery system, Au@MPA-PEG-FA-PTX, was developed carrying paclitaxel (PTX) on folic acid (FA) and polyethylene glycol (PEG)-modified AuNPs. The nanomaterial was characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible spectroscopy (UV-Vis). Also, the biological activity of the AuNPs drug delivery system was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HL-7702, Hela, SMMC-7721, and HCT-116 cells. Furthermore, apoptotic activity using annexin V-FITC, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) levels was estimated by flow cytometry and fluorescence microscopy. RESULTS: Au@MPA-PEG-FA-PTX exhibited a distinct core-shell structure with a controllable size of 28±1 nm. Also, the AuNPs maintained good dispersion and spherical shape uniformity before and after modification. The MTT assay revealed good antitumor activity of the Au@MPA-PEG-FA-PTX against the Hela, SMMC-7721, and HCT-116 cells, while Au@MPA-PEG-FA-PTX produced better pharmacological effects than PTX in isolation. Further mechanistic investigation revealed that effective internalization of AuNPs by folate-receptor overexpressing cancer cells induced cell apoptosis through excessive production of intracellular ROS. CONCLUSION: The AuNPs drug delivery system showed good target selectivity for folate-receptor overexpressing cancer cells to induce target cell-specific apoptosis. These AuNPs may have great potential as theranostic agents such as in cancer.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Línea Celular Tumoral , Portadores de Fármacos , Ácido Fólico , Oro , Paclitaxel/farmacología , Polietilenglicoles
17.
Nanotechnology ; 32(45)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34340227

RESUMEN

In this study, a nanodrug carrier (mesoporous silica nanoparticle (MSN)-SS-cysteamine hydrochloride (CS)-hyaluronic acid (HA)) for targeted drug delivery was prepared using MSNs, in which HA was used as a targeting ligand and blocking agent to control drug release. Coumarin is a fluorescent molecule that targets mitochondria. Two conjugates (XDS-DJ and 5-FUA-4C-XDS) were synthesized by chemically coupling nitrogen mustard and 5-fluorouracil with coumarin, which was further loaded into MSN-SS-CS-HA nanocarriers. MTT analysis demonstrated that the nanocomposite MSN-SS-CS@5-FUA-4C-XDS/HA displayed stronger cytotoxicity toward HCT-116 cells than HeLa or QSG-7701 cells. Furthermore, MSN-SS-CS@5-FUA-4C-XDS/HA was able to target the mitochondria of HCT-116 cells, causing decreased mitochondrial membrane potential and excessive production of reactive oxygen species. These results indicate that MSN-SS-CS@5-FUA-4C-XDS/HA has the potential to be a nanodrug delivery system for the treatment of colon cancer.


Asunto(s)
Cumarinas/síntesis química , Cisteamina/química , Fluorouracilo/química , Ácido Hialurónico/química , Mitocondrias/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Cumarinas/farmacología , Composición de Medicamentos , Células HCT116 , Células HeLa , Humanos , Mecloretamina/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nanopartículas , Tamaño de la Partícula , Porosidad , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio , Nanomedicina Teranóstica
18.
Nanotechnology ; 32(48)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34371487

RESUMEN

The development trend ofin vitrodiagnostics is to obtain various biological information from a sample at extremely low concentration and volume, which has promoted its progress in accurate and sensitive multiplexed detection. Here, we developed a single color quantum dot (QD) based three-dimensional (3D) structure matrix microarray and conducted the detection of two inflammatory factors (C-reactive protein (CRP) and serum amyloid A (SAA)) by a self-built fluorescence detection system. This strategy increased detection sensitivity by immobilizing the antibody specifically on the 3D substrate because it captured more than about 7 times of 'effective' antibodies compared to the two-dimensional (2D) plane. Compared to the dual QDs-2D fluorescence-linked immunosorbent assay, the limit of detection (LOD) of 3D microarray based on QDs modified with amphiphilic polymers has been further improved to 0.11 ng ml-1for SAA assay and to 0.16 ng ml-1for CRP assay, respectively. By using QD microspheres (SiO2@QDs@SiO2-COOH, containing approximately 200-300 hydrophobic QDs on per SiO2sphere) as fluorescent labels, the LOD for CRP and SAA of 3D microarray reached as high as 15 pg ml-1and 86 pg ml-1, and the sensitivity was further improved by 28-fold and 425-fold, respectively. Because of its excellent performance, this QD microspheres-based 3D microarray has great application potential for highly sensitive and multiplexed quantitative detection of other biomarkers, small molecules, and antibiotic residues in biomedicine and food safety.


Asunto(s)
Análisis por Micromatrices/instrumentación , Microesferas , Puntos Cuánticos/química , Anticuerpos Inmovilizados/química , Biomarcadores/análisis , Proteína C-Reactiva/análisis , Inmunoensayo , Límite de Detección , Proteína Amiloide A Sérica/análisis , Dióxido de Silicio/química
19.
Nano Lett ; 21(17): 7252-7260, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428068

RESUMEN

Blue-emitting heavy-metal free QDs simultaneously exhibiting photoluminescence quantum yield close to unity and narrow emission line widths are essential for next-generation electroluminescence displays, yet their synthesis is highly challenging. Herein, we develop the synthesis of blue-emitting QDs by growing a thin shell of ZnS on ZnSe cores with their size larger than bulk Bohr diameter. The bulk-like size of ZnSe cores enables the emission to locate in the blue region with a narrow emission width close to its intrinsic peak width. The obtained bulk-like ZnSe/ZnS core/shell QDs display high quantum yield of 95% and extremely narrow emission width of ∼9.6 nm. Moreover, the bulk-like size of ZnSe cores reduces the energy level difference between QDs and adjacent layers in LEDs and improves charge transport. The LEDs fabricated with these high-quality QDs show bright pure blue emission with an external quantum efficiency of 12.2% and a relatively long operating lifetime.

20.
Inorg Chem ; 60(9): 6503-6513, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33847486

RESUMEN

Low-toxic InP quantum dots (QDs) as an ideal candidate for Cd-based QDs have tremendous potential for next-generation commercial display and biological detection applications. However, the progress in biological detection is still far behind that of the Cd-based QDs. This is mainly because the InP-based QDs are of inferior stability and photoluminescence quantum yield (PL QY) in aqueous solution. Here, PL QY of 65% and excellent stability of InP/GaP/ZnS QD@SiO2 nanoparticles have been successfully synthesized via a silica coating method. The containing thiol-capped hydrophobic InP/GaP/ZnS QDs were pre-silanized with waterless, ammonia-free hydrolysis tetraethyl orthosilicate, and subsequently, an outer silica shell was generated in the reverse microemulsion. The corresponding QD-based fluorescence-linked immunosorbent assay exhibits a high sensitivity of 0.9 ng mL-1 for C-reactive protein and the broad detection range of 1-1000 ng mL-1, which was close to that of the state-of-the-art Cd-based QD@SiO2 nanoparticles and had the highest sensitivity of Cd-free QDs so far. This work provides a very successful silica coating method for the containing thiol-capped hydrophobic QDs and the QDs highly sensitive to water and oxygen, and the obtained InP/GaP/ZnS QD@SiO2 nanoparticles were considered as the robust, biocompatible, and promising Cd-free fluorescent labels for the further ultra-sensitive detection.


Asunto(s)
Materiales Biocompatibles/química , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Indio/química , Fosfinas/química , Puntos Cuánticos/química , Dióxido de Silicio/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA