Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Environ Manage ; 357: 120727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555844

RESUMEN

The urgent concerns of controlling water body eutrophication and the alleviating phosphorus shortage have led to an urgent need for action. The removal of phosphate from polluted waters and its reuse are essential for the prevention of eutrophication and for the sustainable utilization of phosphate resources. In this study, modified attapulgite with different Ca:Mg molar ratios was synthesized to facilitate the recovery of phosphate, with subsequent use of soil fertilizer. Ca-Mg modified attapulgite with the optimal ratio (ACM-5:3) exhibited an exceptional adsorption quality, achieving a maximum adsorption capacity of 63.2 mg/g. The pseudo-second-order model and Langmuir model could well describe the adsorption kinetics and isotherms, respectively. The adsorption mechanism analyses suggested that the interaction between ACM-5:3 and phosphate depended mainly on ion exchange and electrostatic attraction. Moreover, phosphate-laden-ACM-5:3 demonstrated a significant potential as a phosphorus-releasing fertilizer. It could promote corn growth by ensuring a continuous supply of phosphorus and minimizing phosphorus runoff losses. The above results suggested that ACM-5:3 was a potential adsorbent for efficient phosphate removal and recovery.


Asunto(s)
Fosfatos , Compuestos de Silicona , Contaminantes Químicos del Agua , Fertilizantes , Compuestos de Magnesio , Fósforo , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis
3.
Bioact Mater ; 28: 255-272, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37303853

RESUMEN

Lacking self-repair abilities, injuries to articular cartilage can lead to cartilage degeneration and ultimately result in osteoarthritis. Tissue engineering based on functional bioactive scaffolds are emerging as promising approaches for articular cartilage regeneration and repair. Although the use of cell-laden scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Acellular approaches through the recruitment of endogenous cells offer great promise for in situ articular cartilage regeneration. In this study, we propose an endogenous stem cell recruitment strategy for cartilage repair. Based on an injectable, adhesive and self-healable o-alg-THAM/gel hydrogel system as scaffolds and a biophysio-enhanced bioactive microspheres engineered based on hBMSCs secretion during chondrogenic differentiation as bioactive supplement, the as proposed functional material effectively and specifically recruit endogenous stem cells for cartilage repair, providing new insights into in situ articular cartilage regeneration.

4.
Bioact Mater ; 22: 312-324, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36263100

RESUMEN

Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage. Hydrogel is widely used because it could provide rapid defect filling and proper structure support, and is biocompatible for cell aggregation and matrix deposition. Efforts have been made to seek suitable scaffolds for cartilage tissue engineering. Here Alg-DA/Ac-ß-CD/gelatin hydrogel was designed with the features of physical and chemical multiple crosslinking and self-healing properties. Gelation time, swelling ratio, biodegradability and biocompatibility of the hydrogels were systematically characterized, and the injectable self-healing adhesive hydrogel were demonstrated to exhibit ideal properties for cartilage repair. Furthermore, the new hydrogel design introduces a pre-gel state before photo-crosslinking, where increased viscosity and decreased fluidity allow the gel to remain in a semi-solid condition. This granted multiple administration routes to the hydrogels, which brings hydrogels the ability to adapt to complex clinical situations. Pulsed electromagnetic fields (PEMF) have been recognized as a promising solution to various health problems owing to their noninvasive properties and therapeutic potentials. PEMF treatment offers a better clinical outcome with fewer, if any, side effects, and wildly used in musculoskeletal tissue repair. Thereby we propose PEMF as an effective biophysical stimulation to be 4th key element in cartilage tissue engineering. In this study, the as-prepared Alg-DA/Ac-ß-CD/gelatin hydrogels were utilized in the rat osteochondral defect model, and the potential application of PEMF in cartilage tissue engineering were investigated. PEMF treatment were proven to enhance the quality of engineered chondrogenic constructs in vitro, and facilitate chondrogenesis and cartilage repair in vivo. All of the results suggested that with the injectable self-healing adhesive hydrogel and PEMF treatment, this newly proposed tissue engineering strategy revealed superior clinical potential for cartilage defect treatment.

5.
Bioengineering (Basel) ; 9(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36290493

RESUMEN

We develop a poly (lactic-co-glycolic acid)/ß-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.

6.
Front Immunol ; 13: 953354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081496

RESUMEN

Urinary tract infection (UTI) caused by uropathogens is the most common infectious disease and significantly affects all aspects of the quality of life of the patients. However, uropathogens are increasingly becoming antibiotic-resistant, which threatens the only effective treatment option available-antibiotic, resulting in higher medical costs, prolonged hospital stays, and increased mortality. Currently, people are turning their attention to the immune responses, hoping to find effective immunotherapeutic interventions which can be alternatives to the overuse of antibiotic drugs. Bladder infections are caused by the main nine uropathogens and the bladder executes different immune responses depending on the type of uropathogens. It is essential to understand the immune responses to diverse uropathogens in bladder infection for guiding the design and development of immunotherapeutic interventions. This review firstly sorts out and comparatively analyzes the immune responses to the main nine uropathogens in bladder infection, and summarizes their similarities and differences. Based on these immune responses, we innovatively propose that different microbial bladder infections should adopt corresponding immunomodulatory interventions, and the same immunomodulatory intervention can also be applied to diverse microbial infections if they share the same effective therapeutic targets.


Asunto(s)
Cistitis , Infecciones Urinarias , Antibacterianos/uso terapéutico , Humanos , Inmunidad , Calidad de Vida , Vejiga Urinaria , Infecciones Urinarias/etiología , Infecciones Urinarias/terapia
7.
J Orthop Translat ; 34: 113-120, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35891714

RESUMEN

Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.

8.
Stroke ; 53(4): 1373-1385, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35135326

RESUMEN

BACKGROUND: Ischemic stroke is a leading cause of death and disability worldwide. However, the time window for quickly dissolving clots and restoring cerebral blood flow, using tissue-type plasminogen activator treatment is rather limited, resulting in many patients experiencing long-term functional impairments if not death. This study aims to determine the roles of cranial bone transport (CBT), a novel, effective, and simple surgical technique, in the recovery of ischemic stroke using middle cerebral artery occlusion (MCAO) rat model. METHODS: CBT was performed by slowly sliding a bone segment in skull with a special frame and a speed of 0.25 mm/12 hours for 10 days following MCAO. Morris water maze, rotarod test, and catwalk gait analysis were used to study the neurological behaviors, and infarct area and cerebral flow were evaluated during CBT process. Immunofluorescence staining of CD31 and Nestin/Sox2 (sex determining region Y box 2) was performed to study the angiogenesis and neurogenesis. OVA-A647 (ovalbumin-Alexa Fluor 647) was intracisterna magna injected to evaluate the meningeal lymphatic drainage function. RESULTS: CBT treatment has significantly reduced the ischemic lesions areas and improved the neurological deficits in MCAO rats compared with the rats in the control groups. CBT treatment significantly promoted angiogenesis and neurogenesis in the brain of MCAO rats. The drainage function of meningeal lymphatic vessels in MCAO rats was significantly impaired compared with normal rats. Ablation of meningeal lymphatic drainage led to increased neuroinflammation and aggravated neurological deficits and ischemic injury in MCAO rats. CBT treatment significantly improved the meningeal lymphatic drainage function and alleviated T-cell infiltration in MCAO rats. CONCLUSIONS: This study provided evidence for the possible mechanisms on how CBT attenuates ischemic stroke injury and facilitates rapid neuronal function recovery, suggesting that CBT may be an alternative treatment strategy for managing ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Animales , Isquemia Encefálica/terapia , Modelos Animales de Enfermedad , Humanos , Infarto de la Arteria Cerebral Media/patología , Neovascularización Patológica , Neurogénesis , Ratas , Cráneo/patología
9.
PLoS One ; 16(11): e0259790, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793506

RESUMEN

BACKGROUND: There has been a surge of interest on velocity-based training (VBT) in recent years. However, it remains unclear whether VBT is more effective in improving strength, jump, linear sprint and change of direction speed (CODs) than the traditional 1RM percentage-based training (PBT). OBJECTIVES: To compare the training effects in VBT vs. PBT upon strength, jump, linear sprint and CODs performance. DATA SOURCES: Web of science, PubMed and China National Knowledge Infrastructure (CNKI). STUDY ELIGIBILITY CRITERIA: The qualified studies for inclusion in the meta-analysis must have included a resistance training intervention that compared the effects of VBT and PBT on at least one measure of strength, jump, linear sprint and CODs with participants aged ≥16 yrs. and be written in English or Chinese. METHODS: The modified Pedro Scale was used to assess the risk of bias. Random-effects model was used to calculate the effects via the mean change and pre-SD (standard deviation). Mean difference (MD) or Standardized mean difference (SMD) was presented correspondently with 95% confidence interval (CI). RESULTS: Six studies met the inclusion criteria including a total of 124 participants aged 16 to 30 yrs. The differences of training effects between VBT and PBT were not significant in back squat 1RM (MD = 3.03kg; 95%CI: -3.55, 9.61; I2 = 0%) and load velocity 60%1RM (MD = 0.02m/s; 95%CI: -0.01,0.06; I2 = 0%), jump (SMD = 0.27; 95%CI: -0.15,0.7; I2 = 0%), linear sprint (MD = 0.01s; 95%CI: -0.06, 0.07; I2 = 0%), and CODs (SMD = 0.49; 95%CI: -0.14, 1.07; I2 = 0%). CONCLUSION: Both VBT and PBT can enhance strength, jump, linear sprint and CODs performance effectively without significant group difference.


Asunto(s)
Entrenamiento de Fuerza , China , Recolección de Datos , Femenino , Humanos , Masculino
10.
PeerJ ; 9: e11684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277150

RESUMEN

Overactive bladder (OAB) is a common condition that affects a significant patient population. The N-methyl-D-aspartate receptor (NMDAR) has a role in developing bladder overactivity, pharmacological inhibition of which inhibits bladder overactivity. The common pathogenesis of OAB involves bladder smooth muscle (BSM) overactivity. In this study, a smooth muscle-specific NMDAR knockout (SMNRKO) mouse model was generated. The bladders from SMNRKO mice displayed normal size and weight with an intact bladder wall and well-arranged BSM bundles. Besides, SMNRKO mice had normal voiding patterns and urodynamics and BSM contractility, indicating that NMDAR in BSM was not essential for normal physiological bladder morphology and function. Unexpectedly, cyclophosphamide (CYP)-treated SMNRKO and wild-type (WT) mice had similar pathological changes in the bladder. Furthermore, SMNRKO mice displayed similar altered voiding patterns and urodynamic abnormalities and impaired BSM contractility compared with WT mice after CYP treatment. MK801 partially reversed the pathological bladder morphology and improved bladder dysfunction induced by CYP, but did not cause apparent differences between WT mice and SMNRKO mice, suggesting that NMDAR in BSM was not involved in pathological bladder morphology and function. Moreover, the direct instillation of NMDAR agonists or antagonists into the CYP-induced OAB did not affect bladder urodynamic function, indicating that NMDAR in BSM was not the pharmacotherapy target of MK801 for CYP-induced cystitis. The findings indicated that NMDAR in BSM was not essential for normal physiological or pathological bladder morphology and function, and MK801 improving pathological bladder function was not mediated by an action on NMDAR in BSM.

11.
Bioact Mater ; 6(8): 2346-2359, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33553820

RESUMEN

The development of an excellent, bioabsorbable hemostatic material for deep wound remains a challenge. In this work, a biodegradable cotton-like biomimetic fibrous mat of poly (l-lactic acid) (PLLA) was made by melt spinning. Subsequently, SD composite was prepared by cross-linking sodium alginate (SA) with dopamine (DA). It was immobilized on the fibre surface, which inspired by mussel byssus. Finally, Fe3+ was loaded onto the 0.5SD/PLLA composite by chelation with the carboxyl of alginate and phenolic hydroxy of dopamine. The haemostasis experiment found that the hemostatic time 47 s in vitro. However, the bleeding volume was 0.097 g and hemostatic time was 23 s when 20Fe3+-0.5SD/PLLA was applied in the haemostasis of the rat liver. As a result of its robust hydrophilicity and bouffant cotton-like structure, it could absorb a large water from blood, which could concentrate the component of blood and reduce the clotting time. Furthermore, the addition of Fe3+ in the 0.5SD/PLLA had a significant effect on improve hemostatic property. It also displayed excellent antibacterial property for Escherichia coli and Staphylococcus aureus. Notably, it possesses superior hemocompatibility, cytocompatibility and histocompatibility. Hence, 20Fe3+-0.5SD/PLLA has high potential application in haemostasis for clinical settings due to its outstanding properties.

12.
J Mater Chem B ; 8(13): 2673-2688, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32147674

RESUMEN

An effective treatment for spinal cord injury (SCI) remains a severe clinical challenge due to the intrinsically limited regenerative capacity and complex anatomical structure of the spinal cord. The combination of biomaterials, which serve as scaffolds for axonal growth, cells and neurotrophic factors, is an excellent candidate for spinal cord regeneration. Herein, a new micropatterned conductive electrospun nanofiber mesh was constructed with poly{[aniline tetramer methacrylamide]-co-[dopamine methacrylamide]-co-[poly(ethylene glycol) methyl ether methacrylate]}/PCL (PCAT) using a rotation electrospinning technology. The aim was to study the synergistic effects of electrical stimulation (ES) and a micropatterned conductive electrospun nanofiber mesh incorporated with nerve growth factor (NGF) on the differentiation of rat nerve stem cells (NSCs). The hydrophilicity of the conductive nanofiber mesh could be tailored by changing the dopamine (DA) and aniline tetramer (AT) content from 19° to 79°. A favorable electroactivity and conductivity was achieved by the AT segment of PCAT. The as-fabricated micropatterned electrospun nanofiber mesh possessed a regularly aligned valley and ridge structure, and the diameter of the nanofiber was 312 ± 58 nm, while the width of the valley and ridge was measured to be 210 ± 17 µm and 200 ± 16 µm, respectively. The growth and neurite outgrowth of differentiated NSCs were observed along the valley of the micropatterned nanofiber mesh. In addition, the NGF loaded micropatterned conductive electrospun nanofiber mesh combined with ES exhibited the highest cell viability, and effectively facilitated the differentiation of NSCs into neurons and suppressed the formation of astrocytes, thus exhibiting a great application potential for nerve tissue engineering.


Asunto(s)
Nanofibras/química , Regeneración Nerviosa , Células-Madre Neurales/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Conductividad Eléctrica , Estimulación Eléctrica , Ratones , Estructura Molecular , Células 3T3 NIH , Factor de Crecimiento Nervioso/química , Células PC12 , Tamaño de la Partícula , Polímeros/química , Ratas , Propiedades de Superficie
13.
ACS Appl Bio Mater ; 3(10): 6932-6943, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35019354

RESUMEN

Three-dimensional (3D) fibrous scaffolds allowing sufficient cell infiltration are urgently needed for bone tissue engineering. In this study, a highly permeable 3D interconnected scaffold was fabricated by surface bonding of cotton-like nonwoven fibers with micro- and nanoscale architecture using gaseous chloroform. The results of physiochemical characterization indicated that bonding for 90 min with a fiber density of 0.15 g/cm3 could facilitate satisfactory porosity, supportive mechanical properties, and a 3D spatial microstructure for cell ingrowth. Coating with gelatin on the fibers induced highly efficient in vitro mineralization and in vivo bone formation as indicated by mineral deposition and repair of rabbit radius bone defect. The findings from this work demonstrated that these biofunctionalized fibrous scaffolds could bionically represent topographic nanofeatures and biological composition for cell binding affinities similar to those of the natural extracellular matrix (ECM). It can be concluded that the facile fabrication and modification strategy of 3D fibrous scaffolds exhibit promising prospect to fulfill the progressive needs in bone tissue engineering.

14.
ACS Biomater Sci Eng ; 6(1): 634-646, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463207

RESUMEN

Electrically conducting polymers have been emerging as intelligent bioactive materials for regulating cell behaviors and bone tissue regeneration. Additionally, poor adhesion between conventional implants and native bone tissue may lead to displacement, local inflammation, and unnecessary secondary surgery. Thus, a conductive bioadhesive with strong adhesion performance provides an effective approach to fulfill fixation and regeneration of comminuted bone fracture. Inspired by mussel chemistry, we designed the conductive copolymers poly{[aniline tetramer methacrylamide]-co-[dopamine methacrylamide]-co-[poly(ethylene glycol) methyl ether methacrylate]} [poly(ATMA-co-DOPAMA-co-PEGMA); AT:conductive aniline tetramer; DOPA:dopamine; PEG:poly(ethylene glycol))] with AT content 3.0, 6.0, and 9.0 mol %, respectively. The adhesive strength of this copolymer was enhanced during tensile process perhaps due to the synergistic effects of H-bonding, π-π interactions, and polymer long-chain entanglement, reaching up to 1.28 MPa with 6 mol % AT. Biological characterizations of preosteoblasts indicated that the bioadhesives exhibited desirable biocompatibility. In addition, the osteogenic differentiation was synergistically enhanced by the conductive substrate and electrical stimulation with a square wave, frequency of 100 Hz, 50% duty cycle, and electrical potential of 500 mV, as indicated by ALP activity, calcium deposition, and expression of osteogenic genes. The ALP activity at 14 days and calcium deposition at 28 days on the 9 mol % AT group were significantly higher than that on PLGA under electrical stimulation. The expression value of OPN for 9 mol % AT group was notably upregulated by 5.9-fold compared with PLGA at 7 days under electrical stimulation. Overall, the conductive polymers with strong adhesion can synergistically upregulate the cellular activity combining with electrical stimulation and might be a promising bioadhesive for orthopedic and dental applications.


Asunto(s)
Adhesivos , Ingeniería de Tejidos , Compuestos de Anilina , Huesos , Osteogénesis , Polímeros
15.
Nanoscale ; 11(48): 23423-23437, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31799540

RESUMEN

Functional biomaterials with magnetic properties are considerably useful for regulating cell behavior and promoting bone regeneration. And the combination of such biomaterials with physical environmental cues (such as magnetic fields and mechanical stress) might be more favorable for the regulation of cell function. This study is aimed at investigating the combined effects of magnetically responsive materials and a static magnetic field (SMF) on the osteogenic differentiation of osteoblasts and the potential mechanism involved. In this study, oleic acid modified iron oxide nanoparticles (IO-OA NPs) were utilized to generate homogeneous magnetic nanocomposites with poly(lactide-co-glycolide) (PLGA) used as the base and to enhance the mechanical properties of the composites. In vitro experimental results show that in the presence of an external SMF, cell attachment and osteogenic differentiation were significantly improved using the IO-OA/PLGA composites, as indicated by enhanced alkaline phosphatase (ALP) activity, increased mineralized nodule formation, and upregulated bone-associated gene expression (ALP, OCN, and BMP2), in a dose- and time-dependent manner. Furthermore, the upregulated expression levels of piezo-type mechanosensitive ion channel component 1 (Piezo1), a key receptor for sensing mechanical stimuli, implied that the synergistically enhanced osteogenic differentiation was mainly caused as a result of the mechanical stimuli. Such magnetically actuated mechanical stimuli were induced through the nano-deformation of the magnetic substrate under a SMF, which was directly characterized via in situ scanning using atomic force microscopy (AFM). This study demonstrates that magnetically actuated nano-mechanical stimuli may underpin the synergistic effects of magnetic composites and magnetic stimuli to enhance osteogenic differentiation, and they could form the basis of a potential strategy to accelerate bone formation for bone tissue engineering and regenerative medicine applications.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Campos Magnéticos , Osteogénesis , Animales , Regeneración Ósea , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Nanopartículas de Magnetita/química , Ratones , Nanocompuestos/química , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos
16.
J Pharm Sci ; 108(1): 551-562, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30321547

RESUMEN

The highly damaging state of spinal cord injuries has provided much inspiration for the design of surface modification of the implants that can promote nerve regeneration and functional reconstruction. DOPA-IGF-1, a new recombinant protein designed in our previous study, exhibited strong binding affinity to titanium and significantly enhanced the growth of NIH3T3 cells on the surface of titanium with the same biological activity as IGF-1. In this article, surface modification of poly(lactide-co-glycolide) (PLGA) films with recombinant DOPA-IGF-1 was performed to promote the paracrine activity of human umbilical cord mesenchymal stem cells (hUCMSCs) by secreting neurotrophic factors. DOPA-IGF-1 exhibited the strongest binding ability to PLGA films than commercial IGF-1 and nonhydroxylated YKYKY-IGF-1. In vitro cultures of hUCMSCs on the modified PLGA films showed that DOPA-IGF-1@PLGA substrates significantly improved the proliferation, adhesion, and neurotrophic factors secretion of hUCMSCs, especially for nerve growth factor, as confirmed by qRT-PCR and western blot analysis. Subsequently, the acquired neurotrophic factors secreted by the hUCMSCs cultured on the DOPA-IGF-1@PLGA films obviously enhanced neurite outgrowth of PC12 cells. Taken together, PLGA substrates with DOPA-IGF-1 immobilization is a promising platform for neural tissue engineering via neurotrophic factors secretion from MSCs and should be further tested in vivo.


Asunto(s)
Adhesivos/química , Dihidroxifenilalanina/química , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/farmacología , Neuritas/efectos de los fármacos , Polímeros/química , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Humanos , Ratones , Células 3T3 NIH , Células PC12 , Ratas , Ingeniería de Tejidos/métodos
17.
ACS Appl Bio Mater ; 2(10): 4134-4141, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021428

RESUMEN

Differently sized poly(lactic-co-glycolic) microspheres were efficiently prepared with electrified liquid jets and a phase separation technique for a wide range of applications. Higher polymer concentrations tended to form larger microcarriers. Polymer concentration can obviously affect bead or fiber formation resulting beads and fiber morphologies. As the voltage of electrostatic field and the needle size increased, the size of microcarriers decreased remarkably. The most suitable concentration of ethanol in the collecting solution might be lower than 55%. The resulting composite microcarriers have significantly narrow size distribution, controllable sizes, and high cell adhesion, growth, and osteodifferentiation abilities.

18.
ACS Biomater Sci Eng ; 5(5): 2466-2481, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33405754

RESUMEN

Three-dimensional (3D) composite porous scaffolds containing hydroxyapatite (HA) and polymer matrix showed wide applications in bone repair because of their improved biocompatibility, bioactivity, and mechanical properties in our previous studies. In this work, mesoporous hydroxyapatite (MHA) surface-modified by poly(γ-benzyl-l-glutamate) (PBLG) with different amounts (from 11 to 50 wt %) was synthesized by the in situ ring opening polymerization of γ-benzyl-l-glutamate N-carboxy anhydride (BLG-NCA) and then PBLG-g-MHA/PLGA composite films were prepared to illustrate the biological performance of the composites. Furthermore, porous scaffolds of PBLG-g-MHA/PLGA were fabricated through modified solvent casting/particulate leaching (SC/PL) method to demonstrate the ability of in vivo bone defect repair. In vitro cytological assay indicated that enhanced cell expansion on PBLG-g-MHA/PLGA with 11 wt % PBLG amounts and improved osteogenic differentiation on the composites with 33 and 50 wt % PBLG amounts were achieved. And the porous scaffolds exhibited high porosity and interconnected pores. Results of the in vivo rabbit radius defect repair indicated that rapid mineralization and new bone formation could be observed on the composites with 22 and 33 wt % PBLG. This study revealed that PBLG-g-MHA/PLGA composites might have potential applications in clinical bone repair.

19.
Colloids Surf B Biointerfaces ; 169: 233-241, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29778962

RESUMEN

Polyetheretherketone (PEEK) is a high-performance semicrystalline thermoplastic polymer that is widely used in the orthopedics treatment. However, due to its biological inertness, the surface modification of PEEK using different methods to improve the biocompatibility remains a significant challenge. Herein, we attempted to use the covalently coating of phosphorylated gelatin loaded with bone morphogenetic protein 2 (BMP-2) on hydroxylated micro-porous PEEK films for enhancing the biological activity. Environmental scanning electron microscope (ESEM), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements were applied to characterize the surface of modified or untreated PEEK films. The influence on cell adhesion, proliferation and differentiation was evaluated by culturing of mouse pre-osteoblasts (MC3T3-E1) on different modified PEEK substrates in vitro. Surface characterization showed that the modification was successfully performed on PEEK films. The biological results indicated that surface modification of micro-porous PEEK using phosphorylated gelatin significantly promoted cell adhesion and proliferation. And the osteogenic differentiation was effectively improved while loading with different amounts of BMP-2. Findings from this study indicated that this novel biological modification on PEEK films might be helpful for altering its biological inertness and further expand its medical applications as a kind of orthopedic implants.


Asunto(s)
Proteína Morfogenética Ósea 2/química , Gelatina/química , Cetonas/farmacología , Osteogénesis/efectos de los fármacos , Polietilenglicoles/farmacología , Células 3T3 , Animales , Benzofenonas , Proteína Morfogenética Ósea 2/metabolismo , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Cetonas/química , Ratones , Estructura Molecular , Tamaño de la Partícula , Fosforilación , Polietilenglicoles/química , Polímeros , Porosidad , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Propiedades de Superficie
20.
Macromol Biosci ; 18(6): e1800068, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29687630

RESUMEN

3D printing has become an essential part of bone tissue engineering and attracts great attention for the fabrication of bioactive scaffolds. Combining this rapid manufacturing technique with chemical precipitation, biodegradable 3D scaffold composed of polymer matrix (polylactic acid and polyethylene glycol), ceramics (nano hydroxyapatite), and drugs (dexamethasone (Dex)) is prepared. Results of water contact angle, differential scanning calorimeter, and mechanical tests confirm that incorporation of Dex leads to significantly improved wettability, higher crystallinity degree, and tunable degradation rates. In vitro experiment with mouse MC3T3-E1 cells implies that Dex released from scaffolds is not beneficial for early cell proliferation, but it improves late alkaline phosphatase secretion and mineralization significantly. Anti-inflammation assay of murine RAW 264.7 cells proves that Dex released from all the scaffolds successfully suppresses lipopolysaccharide induced interleukin-6 and inducible nitric oxide synthase secretion by M1 macrophages. Further in vivo experiment on rat calvarial defects indicates that scaffolds containing Dex promote osteoinduction and osteogenic response and would be promising candidates for clinical applications.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos , Dexametasona , Durapatita/química , Poliésteres/química , Polietilenglicoles/química , Impresión Tridimensional , Andamios del Tejido/química , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Dexametasona/química , Dexametasona/farmacología , Ratones , Células RAW 264.7 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA