RESUMEN
Comparing the differences in efficacy and adverse reactions on the application between tunnel peripherally inserted central catheter (TPICC) and ultrasound-guided peripherally inserted central catheter (PICC) in patients with advanced tumors. A retrospective investigation was conducted to collect treatment data. We randomly selected 200 patients with advanced tumors who were admitted to our hospital from January 2020 to January 2022 as the research subjects. The observation group consisted of 100 cases of tunnel PICC catheterization, while the control group consisted of 100 cases of PICC catheterization. We observed and compared the catheterization time, PICC puncture success rate, intraoperative blood loss, pain degree, comfort level, and postoperative complication rate between the 2 groups. Compared with the control group, there was no significant difference at the distribution of PICC indwelling time in the observation group, and the difference was not statistically significant (Pâ >â .05). The success rate on PICC puncture in the observation group was higher than that on the control group (Pâ <â .05). Intraoperative bleeding volume and numerical rating scale (NRS) of the observation group were lower than those of the control group (Pâ <â .05). At 1 month postoperatively, comfort ratings in the observation group and the control group were lower than those of their same groups at 1 week postoperatively (Pâ <â .05); At 1 week and 1 month postoperatively, comfort rating in the observation group were lower than that in the control group (Pâ <â .05). The incidence of postoperative complication in the observation group was lower than that in the control group (Pâ <â .05). TPICC improves the success rate on puncture and the post-catheterization comfort, it reduces NRS and the risks on complications, which owns high safety.
Asunto(s)
Cateterismo Periférico , Neoplasias , Ultrasonografía Intervencional , Humanos , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Ultrasonografía Intervencional/métodos , Cateterismo Periférico/efectos adversos , Cateterismo Periférico/métodos , Anciano , Cateterismo Venoso Central/métodos , Cateterismo Venoso Central/efectos adversos , Adulto , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Resultado del TratamientoRESUMEN
Background: Helicobacter pylori (H. pylori) eradication has been reported to affect gut microbiota distribution. This study aimed to evaluate the effect of probiotic supplementation on the gastrointestinal microbiota during eradication and the efficacy of bismuth-containing quadruple therapy. Methods: One hundred treatment-naïve H. pylori-positive patients were randomly assigned 1:1 to receive 14-day bismuth-containing quadruple therapy (esomeprazole, bismuth, amoxicillin, and clarithromycin) combined with the probiotic (Bifidobacterium animalism subsp. lactis BLa80) or placebo. The Gastrointestinal Symptom Rating Scale (GSRS) was completed before and after treatment. Stool samples were collected for 16S rRNA gene sequencing at weeks 0, 2, and 10. Results: No significant difference in the eradication rate was observed between the two groups. The incidence of adverse events, especially nausea (p = 0.029), was lower in the probiotic group. After treatment, the GSRS score decreased significantly in the probiotic group (p = 0.039). The gut microbiota underwent considerable changes immediately following eradication treatment, predominantly characterized by an increase in Proteobacteria at the expense of commensal Firmicutes and Bacteroidota, but gradually returned to baseline after eight weeks. By week 10, beneficial genera such as Lachnoclostridium, Parasutterella, Hungatella, and Akkermansia were notably enriched in the probiotic group. Additionally, the correlation networks in the probiotic group were closer to their initial levels at week 10 compared to the placebo group. Conclusion: Disturbances in the gut microbiota following H. pylori treatment appeared to be temporary, and probiotic supplementation could mitigate antibiotic-induced alterations in the gut microbiota. This study also provided evidence supporting the effectiveness of probiotics in alleviating gastrointestinal symptoms.
RESUMEN
The correlation between liver disease and the progression of ulcerative colitis (UC) has remained elusive. In this study, it demonstrates that liver injury is intricately linked to the heightened severity of UC in patients, and causes more profound intestinal damage during DSS-induced colitis in mice. Metabolomics analysis of plasma from liver cirrhosis patients shows liver injury compromising nicotinamide supply for NAD+ biosynthesis in the intestine. Subsequent investigation identifies intestinal group 2 innate lymphoid cells (ILC2s) are responsible for liver injury-exacerbated colitis. Reconstitution of ILC2s or the restoration of NAD+ metabolism proves effective in relieving liver injury-aggravated experimental colitis. Mechanistically, the NAD+ salvage pathway regulates gut ILC2s in a cell-intrinsic manner by supporting the generation of succinate, which fuels the electron transport chain to sustaining ILC2s function. This research deepens the understanding of cellular and molecular mechanisms in liver disease-UC interplay, identifying a metabolic target for innovative treatments in liver injury-complicated colitis.
Asunto(s)
Colitis Ulcerosa , Modelos Animales de Enfermedad , Inmunidad Innata , Cirrosis Hepática , Linfocitos , Ratones Endogámicos C57BL , Niacinamida , Animales , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Ratones , Niacinamida/farmacología , Inmunidad Innata/inmunología , Humanos , Linfocitos/metabolismo , Linfocitos/inmunología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inmunología , Masculino , Hígado/metabolismo , Hígado/inmunología , Susceptibilidad a Enfermedades , FemeninoRESUMEN
The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.
Asunto(s)
Ácidos y Sales Biliares , Infliximab , Factor de Necrosis Tumoral alfa , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Infliximab/uso terapéutico , Infliximab/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Metabolic abnormalities and immune inflammation are deeply involved in pulmonary vascular remodelling and the development of pulmonary hypertension (PH). However, the regulatory mechanisms of glycolysis in macrophages are still elusive. Cumulative evidence indicates that ß-catenin plays a crucial role in metabolic reprogramming. This study aimed to investigate the effect of ß-catenin on macrophage glycolysis in PH. METHODS: LPS-induced BMDMs were generated via in vitro experiments. A monocrotaline (MCT)-induced PH rat model was established, and the ß-catenin inhibitor XAV939 was administered in vivo. The role of ß-catenin in glycolysis was analysed. The degree of pulmonary vascular remodelling was measured. RESULTS: ß-catenin was significantly increased in both in vitro and in vivo models. In LPS-induced BMDMs, ß-catenin increased the levels of hexokinase 2 (HK2), phosphofructokinase (PFK), M2-pyruvate kinase (PKM2), lactate dehydrogenase (LDH), and lactate (LA) and the expression of inflammatory cytokines and promoted PASMC proliferation and migration in vitro. XAV939 decreased the level of glycolysis and downregulated the expression of inflammatory cytokines in vivo. MCT promoted pulmonary arterial structural remodelling and right ventricular hypertrophy, and XAV939 alleviated these changes. CONCLUSIONS: Our findings suggest that ß-catenin is involved in the development of PH by promoting glycolysis and the inflammatory response in macrophages. Inhibition of ß-catenin could improve the progression of PH.
Asunto(s)
Modelos Animales de Enfermedad , Glucólisis , Hipertensión Pulmonar , Macrófagos , Monocrotalina , Arteria Pulmonar , Ratas Sprague-Dawley , Remodelación Vascular , beta Catenina , Animales , Glucólisis/efectos de los fármacos , beta Catenina/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Masculino , Remodelación Vascular/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/patología , Proliferación Celular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Transducción de Señal , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Mediadores de Inflamación/metabolismo , Ratas , Movimiento Celular/efectos de los fármacosRESUMEN
Colon cancer is increasing worldwide and is commonly regarded as hormone independent, yet recent reports have implicated sex hormones in its development. Nevertheless, the role of hormones from the hypothalamus-hypophysis axis in colitis-associated colorectal cancer (CAC) remains uncertain. In this study, we observed a significant reduction in the expression of the oxytocin receptor (OXTR) in colon samples from both patient with colitis and patient with CAC. To investigate further, we generated mice with an intestinal-epithelium-cell-specific knockout of OXTR. These mice exhibited markedly increased susceptibility to dextran-sulfate-sodium-induced colitis and dextran sulfate sodium/azoxymethane-induced CAC compared to wild-type mice. Our findings indicate that OXTR depletion impaired the inner mucus of the colon epithelium. Mechanistically, oxytocin was found to regulate Mucin 2 maturation through ß1-3-N-acetylglucosaminyltransferase 7 (B3GNT7)-mediated fucosylation. Interestingly, we observed a positive correlation between B3GNT7 expression and OXTR expression in human colitis and CAC colon samples. Moreover, the simultaneous activations of OXTR and fucosylation by l-fucose significantly alleviated tumor burden. Hence, our study unveils oxytocin's promising potential as an affordable and effective therapeutic intervention for individuals affected by colitis and CAC.
RESUMEN
A compelling correlation method linking microbial communities and host gene expression in tissues is currently absent. A novel pipeline is proposed, dubbed Transcriptome Analysis of Host-Microbiome Crosstalk (TAHMC), designed to concurrently restore both host gene expression and microbial quantification from bulk RNA-seq data. Employing this approach, it discerned associations between the tissue microbiome and host immunity in the context of Crohn's disease (CD). Further, machine learning is utilized to separately construct networks of associations among host mRNA, long non-coding RNA, and tissue microbes. Unique host genes and tissue microbes are extracted from these networks for potential utility in CD diagnosis. Experimental validation of the predicted host gene regulation by microbes from the association network is achieved through the co-culturing of Faecalibacterium prausnitzii with Caco-2 cells. Collectively, the TAHMC pipeline accurately recovers both host gene expression and microbial quantification from CD RNA-seq data, thereby illuminating potential causal links between shifts in microbial composition as well as diversity within CD mucosal tissues and aberrant host gene expression.
Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/genética , Humanos , Microbioma Gastrointestinal/genética , Células CACO-2 , Perfilación de la Expresión Génica/métodos , Faecalibacterium prausnitzii/genética , Aprendizaje Automático , TranscriptomaRESUMEN
Background: Open thoracotomy has been the traditional surgical approach for patients with bronchogenic cysts (BCs). This study aimed to evaluate the safety and efficacy of video-assisted thoracoscopic surgery (VATS) compared to open surgery for the treatment of BCs in adults. Methods: This single-institution, retrospective cohort study included 117 consecutive adult patients who underwent VATS (group A) or open surgery (group B) for BC resection between February 2019 and January 2023. Data regarding clinical history, operation duration, length of hospital stay, 30-day mortality, and recurrence during follow-up were collected and analyzed. Results: Of the total cohort, 103 (88.0%) patients underwent VATS, while 14 (12.0%) patients underwent open surgery. Patients' age in group B were much older than group A (P=0.014), and no significant differences in other demographic and baseline clinical characteristics were observed between the groups. The VATS group had shorter median operation duration (96 vs. 149.5 min, P<0.001) and shorter mean length of hospital stay (5.0±5.5 vs. 8.6±4.0 days, P<0.001). One death occurred in the open surgery group. During a median follow-up of 34 (interquartile range, 20.8-42.5) months, no instances of BC recurrence were observed in either group. Conclusions: Compared to open surgery, VATS is also a safe and efficacious approach for treating BCs in adults. What's more, VATS offered shorter operative times and hospital stays. Considering the minimally invasive, VATS may be a better choice in most patients with bronchial cysts.
RESUMEN
Pancreatic head cancer (PHC) and pancreatic body/tail cancer (PBTC) have distinct clinical and biological behaviors. The microbial and metabolic differences in PHC and PBTC have not been studied. The pancreatic microbiota and metabolome of 15 PHC and 8 PBTC tissues and their matched nontumor tissues were characterized using 16S rRNA amplicon sequencing and untargeted metabolomics. At the genus level, Bradyrhizobium was increased while Corynebacterium and Ruminococcus were decreased in the PHC tissues (Head T) compared with the matched nontumor tissues (Head N) significantly. Shuttleworthia, Bacillus, and Bifidobacterium were significantly decreased in the PBTC tissues (Body/Tail T) compared with the matched nontumor tissues (Body/Tail N). Significantly, Ileibacterium was increased whereas Pseudoxanthomonas was decreased in Head T and Body/Tail T, and Lactobacillus was increased in Head T but decreased in Body/Tail T. A total of 102 discriminative metabolites were identified between Head T and Head N, which were scattered through linoleic acid metabolism and purine metabolism pathways. However, there were only four discriminative metabolites between Body/Tail T and Body/Tail N, which were related to glycerophospholipid metabolism and autophagy pathways. The differential metabolites in PHC and PBTC were commonly enriched in alpha-linolenic acid metabolism and choline metabolism in cancer pathways. Eubacterium decreased in Head T was positively correlated with decreased linoleic acid while negatively correlated with increased arachidyl carnitine and stearoylcarnitine. Bacillus decreased in Body/Tail T was negatively correlated with increased L-carnitine. These microbiota and metabolites deserve further investigations to reveal their roles in the pathogenesis of PHC and PBTC, providing clues for future treatments.
Asunto(s)
Neoplasias Pancreáticas , ARN Ribosómico 16S , Humanos , Neoplasias Pancreáticas/microbiología , Neoplasias Pancreáticas/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Anciano , ARN Ribosómico 16S/genética , Metaboloma , Microbiota , Metabolómica/métodos , Páncreas/metabolismo , Páncreas/microbiología , Corynebacterium/metabolismo , Corynebacterium/genéticaRESUMEN
In recent years, the development of highly active and selective electrocatalysts for the electrochemical reduction of CO2 to produce CO and formic acid has aroused great interest, and can reduce environmental pollution and greenhouse gas emissions. Due to the high utilization of atoms, atom-dispersed catalysts are widely used in CO2 reduction reactions (CO2RRs). Compared with single-atom catalysts (SACs), multi-atom catalysts have more flexible active sites, unique electronic structures and synergistic interatomic interactions, which have great potential in improving the catalytic performance. In this study, we established a single-layer nitrogen-graphene-supported transition metal catalyst (TM-C2N1) based on density functional theory, facilitating the reduction of CO2 to CO or HCOOH with single-atom and multi-atomic catalysts. For the first time, the TM-C2N1 monolayer was systematically screened for its catalytic activity with ab initio molecular dynamics, density of states, and charge density, confirming the stability of the TM-C2N1 catalyst structure. Furthermore, the Gibbs free energy and electronic structure analysis of 3TM-C2N1 revealed excellent catalytic performance for CO and HCOOH in the CO2RR with a lower limiting potential. Importantly, this work highlights the moderate adsorption energy of the intermediate on 3TM-C2N1. It is particularly noteworthy that 3Mo-C2N1 exhibited the best catalytic performance for CO, with a limiting potential (UL) of -0.62 V, while 3Ti-C2N1 showed the best performance for HCOOH, with a corresponding UL of -0.18 V. Additionally, 3TM-C2N1 significantly inhibited competitive hydrogen evolution reactions. We emphasize the crucial role of the d-band center in determining products, as well as the activity and selectivity of triple-atom catalysts in the CO2RR. This theoretical research not only advances our understanding of multi-atomic catalysts, but also offers new avenues for promoting sustainable CO2 conversion.
RESUMEN
Owing to highly theoretical capacity of 3579 mAh/g for lithium-ion storage at ambient temperature, silicon (Si) becomes a promising anode material of high-performance lithium-ion batteries (LIBs). However, the large volume change (â¼300 %) during lithiation/delithiation and low conductivity of Si are challenging the commercial developments of LIBs with Si anode. Herein, a sandwich structure anode that Si nanoparticles sandwiched between carbon nanotube (CNT) and silicon carbide (SiC) has been successfully constructed by acetylene chemical vapor deposition and magnesiothermic reduction reaction technology. The SiC acts as a stiff layer to inhibit the volumetric stress from Si and the inner graphited CNT plays as the matrix to cushion the volumetric stress and as the conductor to transfer electrons. Moreover, the combination of SiC and CNT can relax the surface stress of carbonaceous interface to synergistically prevent the integrated structure from the degradation to avoid the solid electrolyte interface (SEI) reorganization. In addition, the SiC (111) surface has a strong ability to adsorb fluoroethylene carbonate molecule to further stabilize the SEI. Consequently, the CNT/SiNPs/SiC anode can stably supply the capacity of 1127.2 mAh/g at 0.5 A/g with a 95.6 % capacity retention rate after 200 cycles and an excellent rate capability of 745.5 mAh/g at 4.0 A/g and 85.5 % capacity retention rate after 1000 cycles. The present study could give a guide to develop the functional Si anode through designing a multi-interface with heterostructures.
RESUMEN
BACKGROUND: To present an unusual case of abnormal LCA expression and CD43 in SCLC and to review the reported literature to avoid potential diagnostic pitfalls. CASE PRESENTATION: A 73-year-old male patient suffered from persistent back pain for more than one month. MRI revealed a compression fracture of the L1-L5 vertebra. A CT scan revealed multiple nodules and masses at the left root of the neck, lung hilum and mediastinum, and multiple areas of bony destruction of the ribs. Histology of the tumor revealed that small and round cells were arranged in nests with areas of necrosis. The tumor cells were round to ovoid with scant cytoplasm and indistinct cell borders. The nuclear chromatin was finely granular, and the nucleoli were absent or inconspicuous. Immunohistochemically, the tumor cells were positive for cytokeratin, TTF-1, POU2F3, LCA, and CD43. CONCLUSION: This report highlights a potential diagnostic pitfall in the diagnosis of SCLC, urges pathologists to exercise caution in cases of LCA and CD43 positivity and illustrates the need for further immunohistochemical studies to avoid misdiagnosis.
Asunto(s)
Leucosialina , Neoplasias Pulmonares , Humanos , Masculino , Anciano , Leucosialina/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Tomografía Computarizada por Rayos X , Inmunohistoquímica , Biomarcadores de Tumor/metabolismoRESUMEN
POU class 2 homeobox 3 (POU2F3)-positive small cell bladder carcinoma (SCBC) is an extremely rare entity, and its clinicopathologic features have not been fully described. Here, we investigated the clinicopathologic features of 4 cases of POU2F3-positive small cell bladder carcinoma (SCBC) and reviewed the literature. We collected 12 cases of SCBC from our departmental archives and detected the expression of POU2F3 by immunohistochemical (IHC) staining. Selected cases with or without POU2F3 expression were subjected to gene expression analysis between two different groups using DESeq2 software. We identified 4 POU2F3-positive SCBC patients, 2 males and 2 females, with a mean age of 77 years. Three patients had hematuria, and 1 patient had dysuria. Radiologic findings showed a bladder mass. Pathologic diagnosis showed that 3 cases were pure SCBC and 1 was mixed urothelial cancer (UC). Histopathologically, four POU2F3-positive SCBC tumors were composed of small round cells with sparse cytoplasm, the nuclei were salt-and-pepper-like or finely granular. Tumor cells showed characteristic cytoplasmic staining with punctate positive signals for cytokeratin. Syn and CD56 were diffusely positive in all the 4 patients. CgA was positive in only one patient. POU2F3-positive SCBC showed higher expression levels of POU2F3, HMGA2 and PLCG2 genes by RNA-Seq. Our data showed the specific clinicopathologic features of 4 rare POU2F3-positive SCBC cases, and the distinct molecular feature was observed between POU2F3-positive and negative SCBC in the limited number of cases.
Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Pequeñas , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Masculino , Femenino , Anciano , Carcinoma de Células Pequeñas/patología , Carcinoma de Células Pequeñas/metabolismo , Carcinoma de Células Pequeñas/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Anciano de 80 o más Años , Persona de Mediana Edad , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/análisisRESUMEN
Time series anomaly detection is very important to ensure the security of industrial control systems (ICSs). Many algorithms have performed well in anomaly detection. However, the performance of most of these algorithms decreases sharply with the increase in feature dimension. This paper proposes an anomaly detection scheme based on Graph Attention Network (GAT) and Informer. GAT learns sequential characteristics effectively, and Informer performs excellently in long time series prediction. In addition, long-time forecasting loss and short-time forecasting loss are used to detect multivariate time series anomalies. Short-time forecasting is used to predict the next time value, and long-time forecasting is employed to assist the short-time prediction. We conduct a large number of experiments on industrial control system datasets SWaT and WADI. Compared with most advanced methods, we achieve competitive results, especially on higher-dimensional datasets. Moreover, the proposed method can accurately locate anomalies and realize interpretability.
RESUMEN
Three new neutral and ionic phosphorescent iridium(III) complexes were successfully prepared using 1-(6-methoxynaphthalen-2-yl)isoquinoline as the main ligand, while the auxiliary ligand was 2-(2-1H-imidazolyl)pyridine. Three complexes (Ir1, Ir2, Ir3) showed red emission, peaking at 610, 609, and 615 nm, respectively, and they exhibited good solubility and excellent photophysical properties in different solvents, which is suitable to prepare organic light-emitting diodes (OLEDs) by solution method. Among the three OLEDs prepared by iridium(III) complexes using the solution method, the device based on Ir2 possessed better electroluminescent properties, and its maximum brightness, current efficiency (CE), power efficiency (PE), and the maximum external quantum efficiency (EQE) were 507.2 cd m-2 , 0.14 cd A-1 , 0.06 lm W-1 , and 0.14%. respectively, proving that the three complexes have a certain of potential for OLEDs applications and are expected to expand the applications of iridium(III) complexes for OLEDs.
Asunto(s)
Iridio , Ligandos , Iones , Solubilidad , SolventesRESUMEN
Antibiotic pollution in the environment has a negative impact on ecosystem security. Taking the Oujiang River Basin as an example,high-performance liquid chromatography mass spectrometry(LC-MS)was used to detect the concentration of six classes of 35 antibiotics in the surface water of the southern Zhejiang River Basin. The concentration level and spatial distribution of antibiotics were analyzed,the risk of antibiotics to ecology and human health were assessed using relevant models,and the sources of antibiotics were discussed. The results showed that in 20 sampling sites,a total of four classes of 12 antibiotics were detected,including sulfonamides,quinolones,tetracyclines,and lincosamides. The total concentration was ND-1 018 ng·L-1. The highest detection rate was that of Lincomycin(90.48%),followed by that of sulfapyridine(38.10%). The three antibiotics with the highest average concentrations were ofloxacin(12.49 ng·L-1),Lincomycin(11.08 ng·L-1),and difloxacin(7.38 ng·L-1). Antibiotics in the basin showed mainly spotty pollution,which had large spatial differentiation. The average concentration of antibiotics in the upstream(54.39 ng·L-1)was higher than that mid-downstream(46.64 ng·L-1). The degree of antibiotic pollution from upstream to downstream showed a characteristic of being "sparse in the upstream and dense in the downstream. " This indicated that the concentration of antibiotics in the upstream was significantly different,whereas the pollution degree of antibiotics in the downstream was uniform. The upstream was mainly polluted by health,livestock,and poultry breeding wastewater emissions,and downstream pollution was mainly caused by densely populated activities and the rapid development of economy,trade,and industry. The ecological risk assessment results showed that the upstream site H6 had the highest risk quotient,ofloxacin and enrofloxacin had high risk levels, and lincomycin had a moderate risk level. Health risk assessment results showed that the Oujiang River surface water antibiotics posed no risk to human health.
Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Humanos , Antibacterianos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Ofloxacino/análisis , Lincomicina , Medición de Riesgo , Agua/análisis , China , Contaminantes Químicos del Agua/análisisRESUMEN
BACKGROUND: Melan-A/MART-1 is a melanocytic differentiation marker recognized as an antigen on melanoma cells. It is a useful diagnostic marker for pathologists in the diagnosis of melanocytic tumors. However, we recently found that Melan-A can be expressed in some non-melanocytic carcinomas that are rarely reported in the literature. METHODS: We analyzed the expression of Melan-A in 87 non-melanocytic carcinoma tissue samples by immunohistochemistry. Marker positivity was defined as ≥10% positive tumor cells. RESULTS: In 87 non-melanocytic carcinoma tissue samples, Melan-A was positive in six (6.89%) cases, of which four (66.7%) were male and two (33.3%) were female, with a mean age of 60 years (range 21-82 years). Five (83.3%) of the Melan-A-positive cases had distant metastases. Compared with Melan-A negative cases, Melan-A positive non-melanocytic carcinomas were significantly associated with poor prognosis (P=0.0023). CONCLUSIONS: Melan-A expression is relatively rare in non-melanocytic carcinoma cases. This report highlights a potential diagnostic pitfall in the diagnosis of melanoma, urges pathologists to exercise caution in cases of Melan-A positivity, and illustrates the need for an immunohistochemical marker panel to avoid misdiagnosis.
Asunto(s)
Biomarcadores de Tumor , Inmunohistoquímica , Antígeno MART-1 , Humanos , Anciano , Persona de Mediana Edad , Femenino , Antígeno MART-1/metabolismo , Masculino , Adulto , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Adulto Joven , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/patología , Diagnóstico Diferencial , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Carcinoma/metabolismo , Carcinoma/patología , Carcinoma/diagnóstico , PronósticoRESUMEN
BACKGROUND: Mucosal healing is one of the principal therapeutic targets for ulcerative colitis (UC). Mitochondria are dynamic organelles that undergo constant fusion and fission; however, the process that is most conducive to mucosal healing remains unclear. This study investigated the role of mitochondrial fission in mucosal healing in UC patients. METHODS: Quantitative polymerase chain reaction, Western blotting, and immunostaining were used to detect mitochondrial fission in UC patients and a dextran sulfate sodium-induced colitis model. Colonic organoids were used to investigate the role of mitochondrial fission in butyrate metabolism. Enzyme activity assays were performed to identify the key proteins involved in this mechanism. RESULTS: It was found that inhibition of mitochondrial fission promoted mucosal healing in mice and that there was an increase in mitochondrial fission in colonic epithelial cells of UC patients. Excessive fission inhibits stem cell proliferation by impairing butyrate metabolism in colonic organoids. The mitochondrial fission antagonist P110 failed to promote mucosal healing in antibiotic-treated mice, and the addition of exogenous butyrate reversed this effect. Increased butyrate exposure in the colonic stem cell niche has also been observed in UC patients. Mechanistically, enzyme activity assays on colonic organoids revealed that excessive fission inhibits mitochondrial acetoacetyl-CoA thiolase activity via reactive oxygen species. CONCLUSIONS: Collectively, these data indicate that excessive mitochondrial fission suppresses mucosal repair by inhibiting butyrate metabolism and provides a potential target for mucosal healing in patients with ulcerative colitis.
Asunto(s)
Colitis Ulcerosa , Humanos , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Dinámicas Mitocondriales , Mucosa Intestinal/metabolismo , Butiratos/farmacología , Butiratos/metabolismoRESUMEN
Cesarean section (CS) delivery is known to disrupt the transmission of maternal microbiota to offspring, leading to an increased risk of inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly characterized. Here, we demonstrate that CS birth renders mice susceptible to dextran sulfate sodium (DSS)-induced colitis and impairs group 3 innate lymphoid cell (ILC3) development. Additionally, CS induces a sustained decrease in Lactobacillus abundance, which subsequently contributes to the colitis progression and ILC3 deficiency. Supplementation with a probiotic strain, L. acidophilus, or its metabolite, indole-3-lactic acid (ILA), can attenuate intestinal inflammation and restore ILC3 frequency and interleukin (IL)-22 level in CS offspring. Mechanistically, we indicate that ILA activates ILC3 through the aryl hydrocarbon receptor (AhR) signaling. Overall, our findings uncover a detrimental role of CS-induced gut dysbiosis in the pathogenesis of colitis and suggest L. acidophilus and ILA as potential targets to re-establish intestinal homeostasis in CS offspring.