Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Vaccines (Basel) ; 12(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39066346

RESUMEN

Vaccine hesitancy is one of the top ten threats to global health. Artificial intelligence-driven chatbots and motivational interviewing skills show promise in addressing vaccine hesitancy. This study aimed to develop and validate an artificial intelligence-driven motivational digital assistant in decreasing COVID-19 vaccine hesitancy among Hong Kong adults. The intervention development and validation were guided by the Medical Research Council's framework with four major steps: logic model development based on theory and qualitative interviews (n = 15), digital assistant development, expert evaluation (n = 5), and a pilot test (n = 12). The Vaccine Hesitancy Matrix model and qualitative findings guided the development of the intervention logic model and content with five web-based modules. An artificial intelligence-driven chatbot tailored to each module was embedded in the website to motivate vaccination intention using motivational interviewing skills. The content validity index from expert evaluation was 0.85. The pilot test showed significant improvements in vaccine-related health literacy (p = 0.021) and vaccine confidence (p = 0.027). This digital assistant is effective in improving COVID-19 vaccine literacy and confidence through valid educational content and motivational conversations. The intervention is ready for testing in a randomized controlled trial and has high potential to be a useful toolkit for addressing ambivalence and facilitating informed decision making regarding vaccination.

2.
Toxics ; 12(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39058148

RESUMEN

In this study, the concentrations of trace elements (TEs) in Uroteuthis edulis caught from the East China Sea were determined. There were significant differences between TE concentrations in different body parts. Cu, Zn, and Cd were the most concentrated in the digestive glands and the concentrations of Cr and Co were highest in the gills. No significant differences in concentrations were shown between these tissues. In the four tissues analyzed, the mantle recorded the highest proportion of elemental load, while the digestive glands and gills had the lowest proportions. After maturity, TEs in the mantle showed no significant differences. In the digestive gland, the concentrations of all elements, except Zn, were significantly increased. The gonads illustrated apparent increases in the concentrations of Cr, Cu, and As. In the gills, the concentrations of Co and As were markedly increased.

3.
Angew Chem Int Ed Engl ; : e202411474, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007514

RESUMEN

Owing to its prominent π-delocalization and stability, vinylene linkage holds great merits in the construction of covalent organic frameworks (COFs) with promising semiconducting properties. However, carbon-carbon double bond formation reaction always exhibits relatively low reversibility, unfavorable for the formation of high crystalline frameworks through self-error correction and assembling processes. In this work, we report a heteroatom-tuned strategy to build up a series of two-dimensional (2D) vinylene-linked COFs by Knoevenagel condensation of an electron-deficient methylthiazolyl-based monomer with different triformyl substituted (hetero-)aromatic derivatives. The resulting COFs show high-quality periodic mesoporous structures with high surface areas. Embedding heteroatoms into the backbones enables significantly improving their crystallinity, and finely tailoring their semiconducting structures. Upon visible light stimulation, one of the as-prepared COFs with donor-π-acceptor structure could deliver a nearly seven-fold increase in the catalytic activity of hydrogen generation as compared with the other two. Meanwhile, in combination with high crystallinity and the matched conduction band energy level, such kind of COFs can be able to selectively generate singlet oxygen and superoxide radicals in a high ratio of up to 30:1, allowing for catalyzing aerobic thioanisole oxidation in distinctly tunable activities through the substituent electronic effect of the substrates.

4.
Alzheimers Dement ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973166

RESUMEN

INTRODUCTION: More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS: We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS: We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aß42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION: PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS: A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aß secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aß42 and phosphorylated tau).

5.
ACS Macro Lett ; : 966-971, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038183

RESUMEN

Cell-like particles represent a category of synthetic particles designed to emulate the structures or functions of natural cells. Herein, we present the assembly of cell-like poly(ethylene glycol) (PEG) particles with different stiffnesses and shapes via replication of animal cells and investigate the impact of particle stiffness on their biological behaviors. As a proof of concept, we fabricate red blood cell-like and spherical PEG particles with varying cross-linking densities. A systematic exploration of their properties, encompassing morphology, stiffness, deformability, and biodistribution, reveal the vital influence of particle stiffness on in vivo fate, elucidating its role in governing the traversal of capillaries and the dynamic interactions with phagocytic cells.

6.
Autophagy ; : 1-21, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38953310

RESUMEN

Co-occurring mutations in KEAP1 in STK11/LKB1-mutant NSCLC activate NFE2L2/NRF2 to compensate for the loss of STK11-AMPK activity during metabolic adaptation. Characterizing the regulatory crosstalk between the STK11-AMPK and KEAP1-NFE2L2 pathways during metabolic stress is crucial for understanding the implications of co-occurring mutations. Here, we found that metabolic stress increased the expression and phosphorylation of SQSTM1/p62, which is essential for the activation of NFE2L2 and AMPK, synergizing antioxidant defense and tumor growth. The SQSTM1-driven dual activation of NFE2L2 and AMPK was achieved by inducing macroautophagic/autophagic degradation of KEAP1 and facilitating the AXIN-STK11-AMPK complex formation on the lysosomal membrane, respectively. In contrast, the STK11-AMPK activity was also required for metabolic stress-induced expression and phosphorylation of SQSTM1, suggesting a double-positive feedback loop between AMPK and SQSTM1. Mechanistically, SQSTM1 expression was increased by the PPP2/PP2A-dependent dephosphorylation of TFEB and TFE3, which was induced by the lysosomal deacidification caused by low glucose metabolism and AMPK-dependent proton reduction. Furthermore, SQSTM1 phosphorylation was increased by MAP3K7/TAK1, which was activated by ROS and pH-dependent secretion of lysosomal Ca2+. Importantly, phosphorylation of SQSTM1 at S24 and S226 was critical for the activation of AMPK and NFE2L2. Notably, the effects caused by metabolic stress were abrogated by the protons provided by lactic acid. Collectively, our data reveal a novel double-positive feedback loop between AMPK and SQSTM1 leading to the dual activation of AMPK and NFE2L2, potentially explaining why co-occurring mutations in STK11 and KEAP1 happen and providing promising therapeutic strategies for lung cancer.Abbreviations: AMPK: AMP-activated protein kinase; BAF1: bafilomycin A1; ConA: concanamycin A; DOX: doxycycline; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; LN: low nutrient; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NSCLC: non-small cell lung cancer; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; PPP2/PP2A: protein phosphatase 2; ROS: reactive oxygen species; PPP3/calcineurin: protein phosphatase 3; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TCL: total cell lysate; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; V-ATPase: vacuolar-type H+-translocating ATPase.

7.
J Med Chem ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058542

RESUMEN

Currently, bifunctional agents with vasodilation and ameliorated vascular remodeling effects provide more advantages for the treatment of pulmonary arterial hypertension (PAH). In this study, we first screened the hit 1 with heat shock protein 110 (Hsp110) inhibition effect from our in-house compound library with soluble guanylate cyclase (sGC) activity. Subsequently, a series of novel bisamide derivatives were designed and synthesized as Hsp110/sGC dual-target regulators based on hit 1. Among them, 17i exhibited optimal Hsp110 and sGC molecular activities as well as remarkable cell malignant phenotypes inhibitory and vasodilatory effects in vitro. Moreover, compared to riociguat, 17i showed superior efficacy in attenuating pulmonary vascular remodeling and right ventricular hypertrophy via Hsp110 suppression in hypoxia-induced PAH rat models (i.g.). Notably, our study successfully demonstrated that the simultaneous regulation of Hsp110 and sGC dual targets was a novel and feasible strategy for PAH therapy, providing a promising lead compound for anti-PAH drug discovery.

8.
Phytopathology ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052468

RESUMEN

Exserohilum turcicum is a devastating fungal pathogen that infects both maize and sorghum, leading to severe leaf diseases of the two crops. According to host specificity, pathogenic isolates of E. turcicum are divided into two formae speciales, namely E. turcicum f. sp. zeae and E. turcicum f. sp. sorghi. To date, the molecular mechanism underlying the host specificity of E. turcicum is marginally known. In this study, the whole genomes of 60 E. turcicum isolates collected from both maize and sorghum were resequenced, which enabled identification of 233,022 single nucleotide polymorphisms (SNPs) in total. Phylogenetic analysis indicates that all isolates are clustered into four genetic groups that have a close relationship with host source. This observation is validated by the result of principal component analysis. Analysis of population structure reveals that there is obvious genetic differentiation between two populations from maize and sorghum. Further analysis shows that 5,431 SNPs, including 612 nonsynonymous SNPs, are completely co-segregated with host source. These nonsynonymous SNPs are located in 539 genes, among which 18 genes are predicted to encode secretory proteins, including six putative effector genes named SIX13-like, Ecp6, GH12, GH28-1, GH28-2, and CHP1. Sequence polymorphism analysis reveals various numbers of SNPs in the coding regions of these genes. These findings provide new insights into the molecular basis of host specificity in E. turcicum.

9.
PEC Innov ; 5: 100311, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027229

RESUMEN

Objective: The overabundance of health misinformation has undermined people's capacity to make evidence-based, informed choices about their health. Using the Informed Health Choices (IHC) Key Concepts (KCs), we are developing a two-stage education programme, Informed Health Choices-Cancer (IHC-C), to provide those impacted by cancer with the knowledge and skills necessary to think critically about the reliability of health information and claims and make well-informed choices. Stage 1 seeks to prioritise the most relevant Key Concepts. Methods: A project group and a patient and carer participation group completed a two-round prioritisation process. The process involved disseminating pre-reading materials, training sessions, and a structured judgement form to evaluate concepts for inclusion. Data from each round were analysed to reach a consensus on the concepts to include. Results: Fourteen participants were recruited and completed the first-round prioritisation. Fifteen participants undertook the second-round prioritisation. Nine Key Concepts were selected for the programme across five training sessions and two consensus meetings. Conclusion: The prioritised concepts identified represent the most pertinent aspects of cancer-related information for those impacted by the disease. By incorporating these concepts into educational materials and communication strategies, healthcare providers and organisations can potentially help cancer patients, survivors, and their loved ones to recognise and combat cancer-related misinformation more effectively. Innovation: This study introduces a participatory prioritisation process, which integrates the expertise of healthcare professionals with the insights of patients and carers, thereby enhancing the programme's relevance and applicability.

10.
Nat Commun ; 15(1): 5161, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886405

RESUMEN

Top emission can enhance luminance, color purity, and panel-manufacturing compatibility for emissive displays. Still, top-emitting quantum-dot light-emitting diodes (QLEDs) suffer from poor stability, low light outcoupling, and non-negligible viewing-angle dependence because, for QLEDs with non-red emission, the electrically optimum device structure is incompatible with single-mode optical microcavity. Here, we demonstrate that by improving the way of determining reflection penetration depths and creating refractive-index-lowering processes, the issues faced by green QLEDs can be overcome. This leads to advanced device performance, including a luminance exceeding 1.6 million nits, a current efficiency of 204.2 cd A-1, and a T95 operational lifetime of 15,600 hours at 1000 nits. Meanwhile, our design does not compromise light outcoupling as it offers an external quantum efficiency of 29.2% without implementing light extraction methods. Lastly, an angular color shift of Δu'v' = 0.0052 from 0° to 60° is achieved by narrowing the emission linewidth of quantum dots.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38902191

RESUMEN

BACKGROUND AND AIMS: Recently, metabolic dysfunction-associated steatotic liver disease (MASLD) has been introduced. However, research on this new nomenclature and definition remains limited. This study aims to assess the impact of cardiometabolic risk factors and alcohol consumption on all-cause mortality in MASLD and its subgroups. METHODS AND RESULTS: We included 2408 participants with MASLD in NHANES III and their linked mortality through 2019. MASLD patients were divided into two groups based on alcohol consumption: Pure MASLD and MetALD. The Cox proportional hazard model was used to assess the association between factors and all-cause mortality. During the median 26.0-year follow-up, there were 1040 deaths. The multivariable Cox regression analysis revealed a significant increase of over two-fold in the all-cause mortality rate among patients with four or more cardiometabolic risk factors compared to those with only one. When focusing on each component of cardiometabolic risk factors individually, only diabetes and hypertension were significantly associated with all-cause mortality (p < 0.05). In a subgroup analysis, each additional cardiometabolic factor was linked to an increase in all-cause mortality in both pure MASLD (hazard ratio 1.16; 95% CI 1.06-1.28; p = 0.002) and MetALD (HR 1.77; 95% CI 1.26-2.49; p = 0.001). Notably, an elevation in alcohol consumption was significantly associated with an increase in all-cause mortality rate only in the MetALD (p < 0.001). CONCLUSIONS: This study found that the presence of diabetes or hypertension was significantly associated with all-cause mortality. We also explored the different impacts of these factors and alcohol consumption within MASLD subgroups.

12.
Angew Chem Int Ed Engl ; : e202402446, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38859748

RESUMEN

In this study, we successfully developed two novel vinylene-linked covalent organic frameworks (COFs) using 2-connected 3,6-dimethylpyridazine through Knoevenagel condensation. These COFs featured finely tailored micro-/nano-scale pore sizes, high surface areas and stable non-polar vinylene linkages. Finely resolved powder X-ray diffraction patterns demonstrated highly crystalline structures with a hexagonal lattice in the AA layer stacking. The resulting one-dimensional channels possess strong hydrogen-bond accepting sites arising from the decorated cis-azo/azine units with two pairs of fully exposed lone pair electrons, endowing the as-prepared COFs with exceptional water absorption properties. The g-DZPH-COF exhibited successive steep water uptake steps starting from low relative pressures (P/PSTA=0.1), with the remarkable water uptake capacity of 0.26 g/g at P/PSTA=0.2 (25 °C), which is the optimal value recorded among the reported COFs. Dynamic vapour sorption measurements revealed the fast kinetics of these COFs, even in the cluster formation process. Water uptake and release cycling tests demonstrated their outstanding hydrolytic stability, durability, and adsorption-desorption retention ability.

13.
Phytother Res ; 38(7): 3782-3800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839050

RESUMEN

Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.


Asunto(s)
Enfermedades Intestinales , Polifenoles , Humanos , Polifenoles/farmacología , Niño , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/dietoterapia , Enfermedades Intestinales/prevención & control , Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Antiinflamatorios/farmacología , Dieta
14.
Cell Death Dis ; 15(6): 453, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926362

RESUMEN

Liver regeneration is a complex process involving the crosstalk between parenchymal and non-parenchymal cells, especially macrophages. However, the underlying mechanisms remain incompletely understood. Here, we identify the E3 ubiquitin ligase TRIM26 as a crucial regulator of liver regeneration. Following partial hepatectomy or acute liver injury induced by carbon tetrachloride, Trim26 knockout mice exhibit enhanced hepatocyte proliferation compared to wild-type controls, while adeno-associated virus (AAV)-mediated overexpression of Trim26 reverses the promotional effects. Mechanistically, Trim26 deficiency promotes the recruitment of macrophages to the liver and their polarization towards pro-inflammatory M1 phenotype. These M1 macrophages secrete Wnts, including Wnt2, which subsequently stimulate hepatocyte proliferation through the activation of Wnt/ß-catenin signaling. In hepatocytes, Trim26 knockdown reduces the ubiquitination and degradation of ß-catenin, thereby further enhancing Wnt/ß-catenin signaling. Pharmacological inhibition of Wnt/ß-catenin pathway by ICG-001 or depletion of macrophages by clodronate liposomes diminishes the pro-regenerative effects of Trim26 deficiency. Moreover, bone marrow transplantation experiments provide evidence that Trim26 knockout in myeloid cells alone can also promote liver regeneration, highlighting the critical role of macrophage Trim26 in this process. Taken together, our study uncovers TRIM26 as a negative regulator of liver regeneration by modulating macrophage polarization and Wnt/ß-catenin signaling in hepatocytes, providing a potential therapeutic target for promoting liver regeneration in clinical settings.


Asunto(s)
Hepatocitos , Regeneración Hepática , Macrófagos , Ratones Noqueados , Ubiquitina-Proteína Ligasas , Vía de Señalización Wnt , beta Catenina , Animales , Masculino , Ratones , beta Catenina/metabolismo , Polaridad Celular , Proliferación Celular , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
15.
Cell Res ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898113

RESUMEN

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

16.
Front Cell Dev Biol ; 12: 1371323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915444

RESUMEN

Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.

17.
Microorganisms ; 12(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792827

RESUMEN

Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the phosphopantetheinyl transferase (PPTase) gene sfp* (with a T base removed) was overexpressed and enzyme activity was restored, enabling B. subtilis 168 to synthesise surfactin with a yield of 747.5 ± 6.5 mg/L. Knocking out ppsD and yvkC did not enhance surfactin synthesis. Overexpression of predicted surfactin transporter gene yfiS increased its titre to 1060.7 ± 89.4 mg/L, while overexpression of yerP, ycxA and ycxA-efp had little or negative effects on surfactin synthesis, suggesting YfiS is involved in surfactin efflux. By replacing the native promoter of the srfA operon encoding surfactin synthase with three promoters, surfactin synthesis was significantly reduced. However, knockout of the global transcriptional regulator gene codY enhanced the surfactin titre to 1601.8 ± 91.9 mg/L. The highest surfactin titre reached 3.89 ± 0.07 g/L, with the yield of 0.63 ± 0.02 g/g DCW, after 36 h of fed-batch fermentation in 5 L fermenter. This study provides a reference for further understanding surfactin synthesis and constructing microbial cell factories.

18.
Electrophoresis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738699

RESUMEN

The viability detection of microalgae with the electrokinetic (EK) technique shows vast applications in the biology and maritime industry. However, due to the slight variations in the EK properties between alive and dead microalgae cells, the accuracy and practicability of this technique is limited. In this paper, the light illumination pretreatment was conducted to modify the EK velocity of microalgae for enhancing the EK difference. The effects of the illumination time and light color on the EK velocities of Chlorella vulgaris and Isochrysis galbana were systematically measured, and the EK differences between alive and dead cells were calculated and compared. The results indicate that under light illumination, the photosynthesis of the alive cells leads to the amplification of the zeta potential, leading toward increase in the EK difference along with the illumination time. By using light with different color spectra to treat the microalgae, it was found that the EK difference changes with the light color according to the following order: white light > red light > blue light > green light. The difference in EK potential with exposure to white light treatment surpasses over 10-fold in comparison to those without such treatment. The light pretreatment technique, as illustrated in this study, offers an advantageous strategy to enhance the EK difference between living and dead cells, proving beneficial in the field of microalgae biotechnology.

19.
ACS Appl Mater Interfaces ; 16(21): 27988-27997, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748900

RESUMEN

Pickering emulsions stabilized by functional nanoparticles (NPs) have received considerable attention for improving the physical stability and biological function of NPs. Herein, hydrophobic polyphenols were chosen as phenolic ligands to form metal-phenolic network (MPN) coatings on NPs (e.g., silica, polystyrene) mediated by the sono-Fenton reaction. The MPN coatings modulated the surface wettability and charges of NPs and achieved emulsification behavior for preparing Pickering emulsions with pH responsiveness and oxidation resistance. A series of polyphenols, including resveratrol, rutin, naringin, and curcumin, were used to form MPN coatings on NPs, which served as stabilizers for the engineering of functionalized oil-in-water (O/W) Pickering emulsions. This work provides a new avenue for the use of hydrophobic polyphenols to modulate NP emulsifiers, which broadens the application of polyphenols for constructing Pickering emulsions with antioxidant properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA