RESUMEN
This paper presents a three-channel reconfigurable step attenuator based on radio frequency (RF) microelectromechanical system (MEMS) switches, in response to the current issues of high insertion loss and low attenuation accuracy of attenuators. The coplanar waveguide (CPW), cross-shaped power dividers, RF MEMS switches, and π-type attenuation resistor networks are designed as a basic unit of the attenuator. The attenuator implemented attenuation of 0~30 dB at 5 dB intervals in the frequency range of 1~25 GHz through two basic units. The results show that the insertion loss is less than 1.41 dB, the attenuation accuracy is better than 2.48 dB, and the geometric size is 2.4 mm × 4.0 mm × 0.7 mm. The attenuator can be applied to numerous fields such as radar, satellites, aerospace, electronic communication, and so on.
RESUMEN
The increasing interest in switchable and tunable wideband perfect absorbers for applications such as modulation, energy harvesting, and spectroscopy has significantly driven research efforts. In this study, we present a dual-function terahertz (THz) metamaterial absorber supported by deep neural networks (DNN). This absorber achieves dual-wideband perfect absorption through the use of graphene and vanadium dioxide (VO2), enabling both switching and tuning functionalities. Simulation results show that, in the insulating phase of VO2, a high-frequency wideband absorption ranging from 9.31 to 9.77 THz is achieved, with an absorption rate exceeding 90%. In contrast, in the metallic phase of VO2, a full-band wideband absorption above 90% is observed from 8.44 to 9.75 THz. The corresponding fractional bandwidths are 61.3% and 174.6%, respectively. Additionally, electrical tuning of graphene's Fermi level from 0.01 to 1 eV enables continuous modulation of absorption intensity between 48 and 100%. The absorber also exhibits polarization insensitivity to TE and TM waves due to its symmetric design and broad incidence angle. This design holds significant potential for various THz applications, including switching, electromagnetic shielding, stealth technology, filtering, and sensing.
RESUMEN
METHODS: Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1ß. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS: CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1ß, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION: The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.
Asunto(s)
Hidrogeles , Degeneración del Disco Intervertebral , Núcleo Pulposo , Péptidos , Regeneración , Animales , Hidrogeles/química , Núcleo Pulposo/metabolismo , Ratones , Degeneración del Disco Intervertebral/terapia , Regeneración/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Disco Intervertebral , Humanos , Proliferación Celular/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Movimiento Celular/efectos de los fármacosRESUMEN
Introduction: Metabolic dysfunction-associated steatohepatitis (MASH) is increasingly becoming a prevalent cause of hepatocellular carcinoma (HCC). Our study examines the burden of MASH-related HCC globally, regionally, and nationally, along with associated risk factors from 1990 to 2019, considering variables such as age, sex, and socioeconomic status. Objective: We aimed to report the global, regional, and national burden of liver cancer due to MASH and its attributable risk factors between 1990 and 2019, by age, sex, and sociodemographic index (SDI). Methods: Utilizing the Global Burden of Disease 2019 project, we analyzed data on prevalence, mortality, and disability-adjusted life years (DALYs) for liver cancer attributable to MASH across 204 countries. We provided counts and rates per 100,000 population, including 95% uncertainty intervals. Results: In 2019, there were 46.8 thousand cases of MASH-related HCC, leading to 34.7 thousand deaths, and 795.8 thousand DALYs globally. While the prevalence increased by 19.8% since 1990, the death and DALY rates decreased by 5.3% and 15.1%, respectively. The highest prevalence was in High-income Asia Pacific, with the greatest increases observed in Australasia, Central Asia, and High-income North America. Southern Sub-Saharan Africa reported the highest death rate, while the lowest rates were in parts of Latin America, Central Sub-Saharan Africa, and Eastern Europe. DALY rates were the highest in Southern Sub-Saharan Africa and the lowest in Tropical Latin America. Discussion: The burden of MASH-related HCC is expected to rise slightly over the next decade. This disease, which is not associated with the SDI, remains a major public health problem. In addition, the escalating rates of obesity, demographic shifts, and an aging population could position MASH as a leading factor in liver cancer cases, surpassing viral hepatitis. It is imperative, therefore, that the forthcoming years see the implementation of strategic interventions aimed at the early detection and prevention of liver cancer associated with MASH.
RESUMEN
High-precision displacement sensing has been widely used across both scientific research and industrial applications. The recent interests in developing micro-opto-electro-mechanical systems (MOEMS) have given rise to an excellent platform for miniaturized displacement sensors. Advancement in this field during past years is now yielding integrated high-precision sensors which show great potential in applications ranging from photoacoustic spectroscopy to high-precision positioning and automation. In this review, we briefly summarize different techniques for high-precision displacement sensing based on MOEMS and discuss the challenges for future improvement.
RESUMEN
Under the support of deep neural networks (DNN), a multifunctional switchable terahertz metamaterial (THz MMs) device is designed and optimized. This device not only achieves ideal ultra-wideband (UWB) absorption in the THz frequency range but enables dual-functional polarization transformation over UWB. When vanadium dioxide (VO2) is in the metallic state, the device as a UWB absorber with an absorption rate exceeding 90% in the 2.43-10 THz range, with a relative bandwidth (RBW) of 145.2%, and its wideband absorption performance is insensitive to polarization. When VO2 is in the insulating state, the device can switch to a polarization converter, achieving conversions from linear to cross polarization and from linear to circular polarization in the ranges of 4.58-10 THz and 4.16-4.43 THz, respectively. Within the 4.58-10 THz range, the polarization conversion ratio approaches 100% with an RBW of 74.3%, the polarization rotation angle is near 90°. Within the 4.16-4.43 THz range, the RBW is 6.29% and the ellipticity ratio approaches 1, Moreover, the effects of incident angle and polarization angle on the operational characteristics are studied. This THz MMs due to its advantages of wide angle, broad bandwidth, and high efficiency, provides valuable references for the research of new multifunctional THz devices. It has great application potential in short-range wireless THz communication, ultrafast optical switches, high-temperature resistant switches, transient spectroscopy, and optical polarization control devices.
RESUMEN
Lead (Pb) contamination in water requires improved decontamination technologies. The addition of phosphate to precipitate Pb2+ is a widely used method for remediating Pb in soil and water, though it has certain limitations. This study focuses on novel 3D mesoporous layered double hydroxide (LDH) sorbents functionalized with phosphate anions for Pb2+ removal from contaminated waters. Our innovative strategy involves converting a sacrificial template metal-organic frameworks (MOFs) structure (MIL-88A(Fe)) into NixFe LDH, followed by an anion exchange reaction with phosphate anions. This process preserves the 3D microrod architecture of MIL-88A and prevents deleterious LDH particle aggregation. The synthesis results in stable microrod crystals, 1-2 µm long, composed of 3D assemblies of NixFe-PO4 LDH nanoplatelets with a specific surface area exceeding 110 m2/g. The novel LDH materials display fast adsorption kinetics (pseudo-second order model) and remarkably high Pb2+ removal performances (Langmuir isotherm model) with a capacity of 538 mg/g, surpassing other reported adsorbents. LDH-PO4 exhibits high selectivity for Pb2+ over competing ions like Ni2+ and Cd2+ (selectivity order is: Pb2+ > Ni2+ > Cd2+). Removal of Pb2+ from NixFeLDH/88A-PO4 involves various mechanisms, including surface complexation and surface precipitation of lead phosphate or lead hydroxide phases as revealed by structural characterization techniques.
Asunto(s)
Hidróxidos , Plomo , Estructuras Metalorgánicas , Fosfatos , Contaminantes Químicos del Agua , Plomo/química , Hidróxidos/química , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Adsorción , Fosfatos/química , Níquel/química , CinéticaRESUMEN
Background: The anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) are important structures to maintain knee stability. The present study aimed to further enrich understandings of the morphology of the cruciate ligaments and explore the relationship between the diameter of ACL and PCL. Method: This study collected valid MRI samples of 50 male and 50 female normal right knee joints and measured the diameter of each point of the ACL and PCL through the 3D Slicer. Results: The diameter of the ACL in the sagittal MRI of the normal right knee joint was significantly different from the diameter of each point of the PCL. The average diameter of each point of the ACL was larger than the diameter of the corresponding point of the PCL. Males and females had statistical differences in their PCL origin point, PCL midpoint, ACL origin point, ACL midpoint, and ACL insertion point diameters under sagittal MRI examination. The average diameter of males was greater than the average diameter of females at the above corresponding sites. In sagittal MRI scans of the normal right knee joint, we observed that only the origin point of the PCL exhibited a moderate correlation with the midpoint and insertion point of the ACL in terms of their respective diameters. Conclusion: The correlation between diameters of normal ACL and PCL in knee joint MRI was moderate and may help clinicians determine appropriate graft for cruciate ligament reconstruction surgery quickly for severe cruciate ligament injuries.
RESUMEN
We propose a novel miniaturized optical attenuator based on the evanescent-field coupling between two nanofibers. Benefiting from a wavelength-dependent waveguiding property of the coupled structure, a tunable attenuation with maximum extinction ratio of ~ 20 dB is demonstrated with an ultrawide optical bandwidth up to 0.7 µm in experiment. The wavelength-depended waveguiding properties of both one single nanofiber and coupled nanofibers are investigated in both theory and simulation. Using an adiabatic coupling structure, an attenuation range from - 0.16 dB to - 18.46 dB is obtained within a spectrum from 1.2 µm to 1.7 µm experimentally. Moreover, the simulated results indicate that, the attenuation only shows a slight change of ~ 0.1 dB with a lateral misalignment of 0.5 µm between the two nanofibers, indicating a high tolerance of this attenuator to the lateral misalignment. Considering the wide bandwidth as well as the ultracompact structure, this attenuator shows high potential in applications such as all-fiber optical sensing and communicating.
RESUMEN
Water scarcity is a pressing issue in arid and semi-arid regions, making fog harvesting a promising method for water collection. However, enhancing the rate of fog harvesting remains a challenge. Controlling the movement of droplets on functional surfaces is crucial for the development of effective water-harvesting devices. In this study, a three-dimensional (3D) fog-harvesting device with mixed wettability is fabricated using a combination of physical and chemical techniques. With inspiration drawn from natural organisms, such as the desert beetle and Nephrolepis cordifolia, which can both live in low humidity, a copper substrate with a leaf-shaped wedge superhydrophilic structure and flat superhydrophobic regions is fabricated for fog harvesting. The modified surface results in a maximum 49.89% improvement in fog-harvesting efficiency compared to the original copper substrate. The synergistic effect of the 3D structure and mixed wettability of this study offers an idea for improving fog collection efficiency, with potential implications for energy sustainability water resources.
RESUMEN
ezSingleCell is an interactive and easy-to-use application for analysing various single-cell and spatial omics data types without requiring prior programing knowledge. It combines the best-performing publicly available methods for in-depth data analysis, integration, and interactive data visualization. ezSingleCell consists of five modules, each designed to be a comprehensive workflow for one data type or task. In addition, ezSingleCell allows crosstalk between different modules within a unified interface. Acceptable input data can be in a variety of formats while the output consists of publication ready figures and tables. In-depth manuals and video tutorials are available to guide users on the analysis workflows and parameter adjustments to suit their study aims. ezSingleCell's streamlined interface can analyse a standard scRNA-seq dataset of 3000 cells in less than five minutes. ezSingleCell is available in two forms: an installation-free web application ( https://immunesinglecell.org/ezsc/ ) or a software package with a shinyApp interface ( https://github.com/JinmiaoChenLab/ezSingleCell2 ) for offline analysis.
Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Análisis de la Célula Individual/métodos , Humanos , Flujo de Trabajo , Biología Computacional/métodos , Interfaz Usuario-Computador , RNA-Seq/métodosRESUMEN
This paper introduces a broadband triple-pole triple-throw (3P3T) RF MEMS switch with a frequency range from DC to 380 GHz. The switch achieves precise signal control and efficient modulation through its six-port design. It achieves an insertion loss of -0.66 dB across its frequency range, with isolation and return loss metrics of -32 dB and -15 dB, respectively. With its low actuation voltage of 6.8 V and rapid response time of 2.28 µs, the switch exemplifies power-efficient and prompt switching performance. The compact design is ideal for integration into space-conscious systems. This switch is pivotal for 6G research and has potential applications in satellite communications, military radar systems, and next-generation radio applications that require multi-antenna access.
RESUMEN
In recent years, there has been an increasing demand for a multiple degrees of freedom (DOF) measurement system with high performance and high integration. Here, we report a 3DOF displacement sensor based on the self-imaging effect of optical micro-gratings. The optical field distribution behind a micro-grating with a period of 3 µm is analyzed theoretically. The transmission properties of a double-grating structure are investigated in theory. In the experiment, 3DOF displacement measurement within a range of 1 mm is demonstrated. Using an interpolation circuit with a subdividing factor of 1000, displacement measurement with a theoretical resolution of 3 nm is realized. The experimental resolution is â¼8n m. An error within 2 µm is obtained experimentally within a range of 1 mm for 3DOF measurement. With a few optical components such as a beam splitter prism and beam expanders, the sensor shows potential in developing ultra-compact multi-DOF displacement measuring systems. Together with a nanometric resolution, the 3DOF displacement sensor has shown great potential in applications such as high-precision mechanical engineering and semiconductor processing.
RESUMEN
This paper presents the design of a 60 GHz millimeter-wave (MMW) slot array horn antenna based on the substrate-integrated waveguide (SIW) structure. The novelty of this device resides in the achievement of a broad impedance bandwidth and high gain performance by meticulously engineering the radiation band structure and slot array. The antenna demonstrates an impressive impedance bandwidth of 14.96 GHz (24.93%), accompanied by a remarkable maximum reflection coefficient of -39.47 dB. Furthermore, the antenna boasts a gain of 10.01 dBi, showcasing its outstanding performance as a high-frequency antenna with a wide bandwidth and high gain. To validate its capabilities, we fabricated and experimentally characterized a prototype of the antenna using a probe test structure. The measurement results closely align with the simulation results, affirming the suitability of the designed antenna for radar sensing applications in future global industrial scenarios.
RESUMEN
Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for â¼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another â¼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is â¼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.
Asunto(s)
Compuestos de Cadmio , Mediciones Luminiscentes , Nanopartículas , Telurio , Telurio/química , Inmunoensayo/métodos , Compuestos de Cadmio/química , Nanopartículas/química , Color , Luminiscencia , Automatización , HumanosRESUMEN
Essential tremor (ET) stands as the most prevalent movement disorder, characterized by rhythmic and involuntary shaking of body parts. Achieving an accurate and comprehensive assessment of tremor severity is crucial for effectively diagnosing and managing ET. Traditional methods rely on clinical observation and rating scales, which may introduce subjective biases and hinder continuous evaluation of disease progression. Recent research has explored new approaches to quantifying ET. A promising method involves the use of intelligent devices to facilitate objective and quantitative measurements. These devices include inertial measurement units, electromyography, video equipment, and electronic handwriting boards, and more. Their deployment enables real-time monitoring of human activity data, featuring portability and efficiency. This capability allows for more extensive research in this field and supports the shift from in-lab/clinic to in-home monitoring of ET symptoms. Therefore, this review provides an in-depth analysis of the application, current development, potential characteristics, and roles of intelligent devices in assessing ET.
Asunto(s)
Temblor Esencial , Humanos , Temblor Esencial/diagnóstico , Temblor Esencial/fisiopatología , Electromiografía/métodos , Electromiografía/instrumentación , Acelerometría/instrumentación , Acelerometría/métodosRESUMEN
This paper proposes what we believe to be a novel linearization signal conditioning circuit for a tri-axial micro-grating micro-opto-electro-mechanical systems (MOEMS) accelerometer. The output of a micro-grating accelerometer varies as a sine/cosine function of the acceleration. The proposed circuit utilizes a subdivision interpolation technique to process these nonlinear intensity variations and render a linear digital output across the full range. Such a linearization circuit was achieved through a 90-degree phase-shift circuit, high-precision DC bias-voltage and subdivision interpolation circuits to reduce the influence of phase, magnitude, and offset errors of the sine-cosine signals on the interpolation factor, improving the resolution and accuracy of acceleration detection. Experimental results demonstrated that the micro-grating MOEMS accelerometer achieves a resolution of sub-mg, cross-axis errors of 3.57%, 1.22% and 0.89% for x-, y- and z-aixs, respectively. The bias instabilities and velocity random walks for the vertical and lateral accelerometer are superior to 26 µg and 38.7 µg/âHz. The tri-axial micro-grating MOEMS accelerometer exhibits significant potential for applications requiring high sensitivity and large operation ranges, including the automotive industry and military equipment.
RESUMEN
Recently, there has been a significant increase in interest in using photocatalysis for the energy conversion of polluting gases. In this research, sodium and ruthenium bimetallic functional sites co-modified bismuth tungstate (Ru/Na-Bi2WO6) nanoflower photocatalyst was synthesized via the hydrothermal method. The CO2 reduction products on the Bi2WO6 substrate were CO (1.66 µmol/g/h, 68 %) and CH4 (0.78 µmol/g/h, 32 %). After optimization, a significant change in the CO2 products of the Bi2WO6-based composite material was observed, with CO (0.61 µmol/g/h, 3.6 %) and CH4 (16.1 µmol/g/h, 96.4 %). Results showed that the dominance of CH4 as the main product in the Ru/Na-BWO system is attributed to the effective doping of Na, which generates impurity energy levels composed of oxygen vacancies, lowering the conduction band position of Bi2WO6, thereby suppressing CO generation, and enhancing CH4 selectivity by changing the CO2 activation pathway. The remarkable performance is ascribed to the synergized adsorption and activation of CO2 by the tandem Na+ sites and Ru0 sites. Specifically, the doped Na+ sites play a major role in promoting the adsorption CO2 molecules, while the Ru0 sites play a dominant role in facilitating the activation of the intermediates.
RESUMEN
Potential-selective electrochemiluminescence (ECL) with tunable maximum-emission-potential ranging from 0.95 to 0.30 V is achieved using AgInS2/ZnS nanocrystals, which is promising in the design of multiplexed bioassay on commercialized ECL setups. The model system AgInS2/ZnS/N2H4 exhibits efficient ECL around 0.30 V and can be exploited for sensitive immunoassays with less electrochemical interference and crosstalk.
Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Nanopartículas , Sulfuros , Compuestos de Zinc , Sulfuros/química , Compuestos de Zinc/química , Inmunoensayo/métodos , Nanopartículas/química , Indio/química , Plata/química , Compuestos de Plata/química , Humanos , Nanopartículas del Metal/químicaRESUMEN
A low-triggering potential and a narrow-potential window are anticipated to decrease the electrochemical interference and cross talk of electrochemiluminescence (ECL). Herein, by exploiting the low oxidative potential (0.82 V vs Ag/AgCl) of dihydrolipoic acid-capped sliver nanoclusters (DHLA-AgNCs), a coreactant ECL system of DHLA-AgNCs/hydrazine (N2H4) is proposed to achieve efficient and oxidative-reduction ECL with a low-triggering potential of 0.82 V (vs Ag/AgCl) and a narrow-potential window of 0.22 V. The low-triggering-potential and narrow-potential-window nature of ECL can be primarily preserved upon labeling DHLA-AgNCs to probe DNA and immobilizing DHLA-AgNCs onto the Au surface via sandwiched hybridization, which eventually enables a selective ECL strategy for the gene assay at +0.82 V. This gene assay strategy can sensitively determine the gene of human papillomavirus from 10 to 1000 pM with a low limit of detection of 5 pM (S/N = 3) and would open a way to improve the applied ECL bioassay.