Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Adv Sci (Weinh) ; : e2309940, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874114

RESUMEN

Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.

2.
Small ; : e2402870, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844986

RESUMEN

DNA nanostructures offer a versatile platform for precise dye assembly, making them promising templates for creating photonic complexes with applications in photonics and bioimaging. However, despite these advancements, the effect of dye loading on the hybridization kinetics of single-stranded DNA protruding from DNA nanostructures remains unexplored. In this study, the DNA points accumulation for imaging in the nanoscale topography (DNA-PAINT) technique is employed to investigate the accessibility of functional binding sites on DNA-templated excitonic wires. The results indicate that positively charged dyes on DNA frameworks can accelerate the hybridization kinetics of protruded ssDNA through long-range electrostatic interactions. Furthermore, the impacts of various charged dyes and binding sites are explored on diverse DNA frameworks with varying cross-sizes. The research underscores the crucial role of electrostatic interactions in DNA hybridization kinetics within DNA-dye complexes, offering valuable insights for the functionalization and assembly of biomimetic photonic systems.

3.
Biomaterials ; 311: 122645, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38850717

RESUMEN

Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.

4.
Opt Express ; 32(11): 20218-20229, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859137

RESUMEN

Traditional camera-based single-molecule localization microscopy (SMLM), with its high imaging resolution and localization throughput, has made significant advancements in biological and chemical researches. However, due to the limitation of the fluorescence signal-to-noise ratio (SNR) of a single molecule, its resolution is difficult to reach to 5 nm. Optical lattice produces a nondiffracting beam pattern that holds the potential to enhance microscope performance through its high contrast and penetration depth. Here, we propose a new method named LatticeFLUX which utilizes the wide-field optical lattice pattern illumination for individual molecule excitation and localization. We calculated the Cramér-Rao lower bound of LatticeFLUX resolution and proved that our method can improve the single molecule localization precision by 2.4 times compared with the traditional SMLM. We propose a scheme using 9-frame localization, which solves the problem of uneven lattice light illumination. Based on the experimental single-molecule fluorescence SNR, we coded the image reconstruction software to further verify the resolution enhancement capability of LatticeFLUX on simulated punctate DNA origami, line pairs, and cytoskeleton. LatticeFLUX confirms the feasibility of using 2D structured light illumination to obtain high single-molecule localization precision under high localization throughput. It paves the way for further implementation of ultra-high resolution full 3D structured-light-illuminated SMLM.

5.
Acta Pharm Sin B ; 14(6): 2761-2772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828152

RESUMEN

Although the discovery of insulin 100 years ago revolutionized the treatment of diabetes, its therapeutic potential is compromised by its short half-life and narrow therapeutic index. Current long-acting insulin analogs, such as insulin-polymer conjugates, are mainly used to improve pharmacokinetics by reducing renal clearance. However, these conjugates are synthesized without sacrificing the bioactivity of insulin, thus retaining the narrow therapeutic index of native insulin, and exceeding the efficacious dose still leads to hypoglycemia. Here, we report a kind of di-PEGylated insulin that can simultaneously reduce renal clearance and receptor-mediated clearance. By impairing the binding affinity to the receptor and the activation of the receptor, di-PEGylated insulin not only further prolongs the half-life of insulin compared to classical mono-PEGylated insulin but most importantly, increases its maximum tolerated dose 10-fold. The target of long-term glycemic management in vivo has been achieved through improved pharmacokinetics and a high dose. This work represents an essential step towards long-acting insulin medication with superior safety in reducing hypoglycemic events.

6.
Biomater Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808607

RESUMEN

The clustered regularly interspaced short palindromic repeat (CRISPR) system, an emerging tool for genome editing, has garnered significant public interest for its potential in treating genetic diseases. Despite the rapid advancements in CRISPR technology, the progress in developing effective delivery strategies lags, impeding its clinical application. Extracellular nanovesicles (EVs), either in their endogenous forms or with engineered modifications, have emerged as a promising solution for CRISPR delivery. These EVs offer several advantages, including high biocompatibility, biological permeability, negligible immunogenicity, and straightforward production. Herein, we first summarize various types of functional EVs for CRISPR delivery, such as unmodified, modified, engineered virus-like particles (VLPs), and exosome-liposome hybrid vesicles, and examine their distinct intracellular pathways. Then, we outline the cutting-edge techniques for functionalizing extracellular vesicles, involving producer cell engineering, vesicle engineering, and virus-like particle engineering, emphasizing the diverse CRISPR delivery capabilities of these nanovesicles. Lastly, we address the current challenges and propose rational design strategies for their clinical translation, offering future perspectives on the development of functionalized EVs.

7.
Nat Commun ; 15(1): 4267, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769317

RESUMEN

The membrane-fusion-based internalization without lysosomal entrapment is advantageous for intracellular delivery over endocytosis. However, protein corona formed on the membrane-fusogenic liposome surface converts its membrane-fusion performance to lysosome-dependent endocytosis, causing poorer delivery efficiency in biological conditions. Herein, we develop an antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Leveraging specific lipid composition at an optimized ratio, such antifouling membrane-fusogenic liposome facilitates fusion capacity even in protein-rich conditions, attributed to the copious zwitterionic phosphorylcholine groups for protein-adsorption resistance. Consequently, the antifouling membrane-fusogenic liposome demonstrates robust membrane-fusion-mediated delivery in the medium with up to 38% fetal bovine serum, outclassing two traditional membrane-fusogenic liposomes effective at 4% and 6% concentrations. When injected into mice, antifouling membrane-fusogenic liposomes can keep their membrane-fusion-transportation behaviors, thereby achieving efficient luciferase transfection and enhancing gene-editing-mediated viral inhibition. This study provides a promising tool for effective intracellular delivery under complex physiological environments, enlightening future nanomedicine design.


Asunto(s)
Liposomas , Fusión de Membrana , Liposomas/metabolismo , Animales , Ratones , Humanos , Endocitosis , Transfección , Edición Génica/métodos , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Incrustaciones Biológicas/prevención & control , Femenino , Lípidos/química
8.
J Nanobiotechnology ; 22(1): 150, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575923

RESUMEN

Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales , Pulpa Dental , Células Madre , Diferenciación Celular , Regeneración , ADN/metabolismo , Proliferación Celular/fisiología
10.
Nano Lett ; 24(15): 4682-4690, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563501

RESUMEN

Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in ∼5.9- and ∼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Enzimas Inmovilizadas/química , Peroxidasa de Rábano Silvestre/química , Glucosa Oxidasa/química , ADN/química
11.
ACS Appl Bio Mater ; 7(4): 2511-2518, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38512069

RESUMEN

High-fidelity patterning of DNA origami nanostructures on various interfaces holds great potential for nanoelectronics and nanophotonics. However, distortion of a DNA origami often occurs due to the strong interface interactions, e.g., on two-dimensional (2D) materials. In this study, we discovered that the adsorption of silica precursors in rapid silicification can prevent the distortion caused by graphene and generates a high shape-fidelity DNA origami-silica composite on a graphene interface. We found that an incubation time of 1 min and silicification time of 16 h resulted in the formation of DNA origami-silica composites with the highest shape fidelity of 99%. By comparing the distortion of the DNA origami on the graphene interface with and without silicification, we observed that rapid silicification effectively preserved the integrity of the DNA origami. Statistical analysis of scanning electron microscopy data indicates that compared to bare DNA origami, the DNA origami-silica composite has an increased shape fidelity by more than two folds. Furthermore, molecular dynamics simulations revealed that rapid silicification effectively suppresses the distortion of the DNA origami through the interhelical insertion of silica precursors. Our strategy provides a simple yet effective solution to maintain the shape-fidelity DNA origami on interfaces that have strong interaction with DNA molecules, expanding the applicable interfaces for patterning 2D DNA origamis.


Asunto(s)
Grafito , Nanoestructuras , Microscopía de Fuerza Atómica , Grafito/química , Nanoestructuras/química , ADN/química , Dióxido de Silicio/química
12.
ACS Appl Bio Mater ; 7(2): 1311-1316, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38303492

RESUMEN

Nanostructures with controlled shapes are of particular interest due to their consistent physical and chemical properties and their potential for assembly into complex superstructures. The use of supporting struts has proven to be effective in the construction of precise DNA polyhedra. However, the influence of struts on the structure of DNA origami frameworks on the nanoscale remains unclear. In this study, we developed a flexible square DNA origami (SDO) framework and enhanced its structural stability by incorporating interarm supporting struts (SDO-s). Comparing the framework with and without such struts, we found that SDO-s demonstrated a significantly improved resistance to deformation. We assessed the deformability of these two DNA origami structures through the statistical analysis of interior angles of polygons based on atomic force microscopy and transmission electron microscopy data. Our results showed that SDO-s exhibited more centralized interior angle distributions compared to SDO, reducing from 30-150° to 60-120°. Furthermore, molecular dynamics simulations indicated that supporting struts significantly decreased the thermodynamic fluctuations of the SDO-s, as described by the root-mean-square fluctuation parameter. Finally, we experimentally demonstrated that the 2D arrays assembled from SDO-s exhibited significantly higher quality than those assembled from SDO. These quantitative analyses provide an understanding of how supporting struts can enhance the structural integrity of DNA origami frameworks.


Asunto(s)
Nanoestructuras , Nanotecnología , Nanotecnología/métodos , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Microscopía de Fuerza Atómica
13.
J Am Chem Soc ; 146(9): 5883-5893, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408317

RESUMEN

DNA monolayers with inherent chirality play a pivotal role across various domains including biosensors, DNA chips, and bioelectronics. Nonetheless, conventional DNA chiral monolayers, typically constructed from single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), often lack structural orderliness and design flexibility at the interface. Structural DNA nanotechnology has emerged as a promising solution to tackle these challenges. In this study, we present a strategy for crafting highly adaptable twisted DNA origami-based chiral monolayers. These structures exhibit distinct interfacial assembly characteristics and effectively mitigate the structural disorder of dsDNA monolayers, which is constrained by a limited persistence length of ∼50 nm of dsDNA. We highlight the spin-filtering capabilities of seven representative DNA origami-based chiral monolayers, demonstrating a maximal one-order-of-magnitude increase in spin-filtering efficiency per unit area compared with conventional dsDNA chiral monolayers. Intriguingly, our findings reveal that the higher-order tertiary chiral structure of twisted DNA origami further enhances the spin-filtering efficiency. This work paves the way for the rational design of DNA chiral monolayers.


Asunto(s)
ADN de Cadena Simple , ADN , ADN/química , Nanotecnología , Conformación de Ácido Nucleico
14.
Adv Sci (Weinh) ; 11(17): e2309899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380546

RESUMEN

The emerging stem cell-derived hepatocyte-like cells (HLCs) are the alternative cell sources of hepatocytes for treatment of highly lethal acute liver failure (ALF). However, the hostile local environment and the immature cell differentiation may compromise their therapeutic efficacy. To this end, human adipose-derived mesenchymal stromal/stem cells (hASCs) are engineered into different-sized multicellular spheroids and co-cultured with 3D coaxially and hexagonally patterned human umbilical vein endothelial cells (HUVECs) in a liver lobule-like manner to enhance their hepatic differentiation efficiency. It is found that small-sized hASC spheroids, with a diameter of ≈50 µm, show superior pro-angiogenic effects and hepatic differentiation compared to the other counterparts. The size-dependent functional enhancements are mediated by the Wnt signaling pathway. Meanwhile, co-culture of hASCs with HUVECs, at a HUVECs/hASCs seeding density ratio of 2:1, distinctly promotes hepatic differentiation and vascularization both in vitro and in vivo, especially when endothelial cells are patterned into hollow hexagons. After subcutaneous implantation, the mini-liver, consisting of HLC spheroids and 3D-printed interconnected vasculatures, can effectively improve liver regeneration in two ALF animal models through amelioration of local oxidative stress and inflammation, reduction of liver necrosis, as well as increase of cell proliferation, thereby showing great promise for clinical translation.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Impresión Tridimensional , Esferoides Celulares , Esferoides Celulares/citología , Humanos , Animales , Células Madre Mesenquimatosas/citología , Ratones , Diferenciación Celular/fisiología , Ingeniería de Tejidos/métodos , Hígado , Hepatocitos/citología , Modelos Animales de Enfermedad , Fallo Hepático/terapia , Técnicas de Cocultivo/métodos
15.
J Am Chem Soc ; 146(8): 5461-5469, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38355136

RESUMEN

Two-dimensional (2D) DNA origami assembly represents a powerful approach to the programmable design and construction of advanced 2D materials. Within the context of hybridization-mediated 2D DNA origami assembly, DNA spacers play a pivotal role as essential connectors between sticky-end regions and DNA origami units. Here, we demonstrated that programming the spacer length, which determines the binding radius of DNA origami units, could effectively tune sticky-end hybridization reactions to produce distinct 2D DNA origami arrays. Using DNA-PAINT super-resolution imaging, we unveiled the significant impact of spacer length on the hybridization efficiency of sticky ends for assembling square DNA origami (SDO) units. We also found that the assembly efficiency and pattern diversity of 2D DNA origami assemblies were critically dependent on the spacer length. Remarkably, we realized a near-unity yield of ∼98% for the assembly of SDO trimers and tetramers via this spacer-programmed strategy. At last, we revealed that spacer lengths and thermodynamic fluctuations of SDO are positively correlated, using molecular dynamics simulations. Our study thus paves the way for the precision assembly of DNA nanostructures toward higher complexity.


Asunto(s)
ADN , Nanoestructuras , ADN Intergénico , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Hibridación de Ácido Nucleico , Nanotecnología
16.
Bioorg Chem ; 143: 107080, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183684

RESUMEN

DNA-based molecular computing has evolved to encompass a diverse range of functions, demonstrating substantial promise for both highly parallel computing and various biomedical applications. Recent advances in DNA computing systems based on surface reactions have demonstrated improved levels of specificity and computational speed compared to their solution-based counterparts that depend on three-dimensional molecular collisions. Herein, computational biomolecular interactions confined by various surfaces such as DNA origamis, nanoparticles, lipid membranes and chips are systematically reviewed, along with their manipulation methodologies. Monitoring techniques and applications for these surface-based computing systems are also described. The advantages and challenges of surface-confined DNA computing are discussed.


Asunto(s)
Computadores Moleculares , Nanopartículas , ADN , Nanotecnología/métodos
17.
Biomaterials ; 305: 122467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224643

RESUMEN

Impaired angiogenesis, bacterial infection, persistent severe pain, exacerbated inflammation, and oxidative stress injury are intractable problems in the treatment of chronic diabetic ulcer wounds. A strategy that effectively targets all these issues has proven challenging. Herein, an in-situ sprayable nanoparticle-gel composite comprising platinum clusters (Pt) loaded-mesoporous polydopamine (MPDA) nanoparticle and QX-314-loaded fibrin gel (Pt@MPDA/QX314@Fibrin) was developed for diabetic wound analgesia and therapy. The composite shows good local analgesic effect of QX-314 mediated by near-infrared light (NIR) activation of transient receptor potential vanilloid 1 (TRPV1) channel, as well as multifunctional therapeutic effects of rapid hemostasis, anti-inflammation, antioxidation, and antibacterial properties that benefit the fast-healing of diabetic wounds. Furthermore, it demonstrates that the composite, with good biodegradability and biosafety, significantly relieved wound pain by inhibiting the expression of c-Fos in the dorsal root ganglion and the activation of glial cells in the spinal cord dorsal horn. Consequently, our designed sprayable Pt@MPDA/QX314@Fibrin composite with good biocompatibility, NIR activation of TRPV1 channel-mediated QX-314 local wound analgesia and comprehensive treatments, is promising for chronic diabetic wound therapy.


Asunto(s)
Diabetes Mellitus , Compuestos de Diazonio , Lidocaína/análogos & derivados , Nanocompuestos , Piridinas , Ratas , Animales , Dolor , Analgésicos/uso terapéutico , Nanocompuestos/uso terapéutico , Fibrina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
18.
Chem Commun (Camb) ; 60(17): 2301-2319, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38251733

RESUMEN

The emerging field of liquid biopsy has garnered significant interest in precision diagnostics, offering a non-invasive and repetitive method for analyzing bodily fluids to procure real-time diagnostic data. The precision and accuracy offered by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) technology have advanced and broadened the applications of liquid biopsy. Significantly, when combined with swiftly advancing nanotechnology, CRISPR/Cas-mediated nanodevices show vast potential in precise liquid biopsy applications. However, persistent challenges are still associated with off-target effects, and the current platforms also constrain the performance of the assays. In this review, we highlight the merits of CRISPR/Cas systems in liquid biopsy, tracing the development of CRISPR/Cas systems and their current applications in disease diagnosis particularly in liquid biopsies. We also outline ongoing efforts to design nanoscale devices with improved sensing and readout capabilities, aiming to enhance the performance of CRISPR/Cas detectors in liquid biopsy. Finally, we identify the critical obstacles hindering the widespread adoption of CRISPR/Cas liquid biopsy and explore potential solutions. This feature article presents a comprehensive overview of CRISPR/Cas-mediated liquid biopsies, emphasizing the progress in integrating nanodevices to improve specificity and sensitivity. It also sheds light on future research directions in employing nanodevices for CRISPR/Cas-based liquid biopsies in the realm of precision medicine.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Medicina de Precisión
19.
Biomater Sci ; 12(9): 2203-2228, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293828

RESUMEN

Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.


Asunto(s)
Nanopartículas , Oligodesoxirribonucleótidos , Humanos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/administración & dosificación , Nanopartículas/química , Animales , Inmunoterapia/métodos , Receptor Toll-Like 9/metabolismo , Sistemas de Liberación de Medicamentos
20.
Adv Mater ; 36(13): e2300665, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37437039

RESUMEN

Clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) gene-editing technology shows promise for manipulating single or multiple tumor-associated genes and engineering immune cells to treat cancers. Currently, most gene-editing strategies rely on viral delivery; yet, while being efficient, many limitations, mainly from safety and packaging capacity considerations, hinder the use of viral CRISPR vectors in cancer therapy. In contrast, recent advances in non-viral CRISPR/Cas9 nanoformulations have paved the way for better cancer gene editing, as these nanoformulations can be engineered to improve safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability. In this review, the advance in non-viral CRISPR delivery is highlighted, and there is a discussion on how these approaches can be potentially used to treat cancers in addressing the aforementioned limitations, followed by the perspectives in designing a proper CRISPR/Cas9-based cancer nanomedicine system with translational potential.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética , Vectores Genéticos , Neoplasias/genética , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA