Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Opt Lett ; 49(11): 2978-2981, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824307

RESUMEN

Upconversion (UC) materials are renowned for their ability to convert low-energy photons into high-energy ones. The manipulation of parameters allows for the observation of multicolored UC luminescence (UCL) within a single material system. While modulation of multicolored UCL commonly relies on excitation at approximately 980 nm, investigation into multicolored UC materials activated by a 1532 nm excitation source remains comparatively scarce. In this work, we introduce NaLnF4:Er3+ as a novel class of smart luminescent materials. When the power density of a 1532 nm laser increases from 0.5 to 20.0 W/cm2, the emission peak positions remain unchanged, but the red-to-green (R/G) ratio decreases significantly from 18.82 to 1.48, inducing a color shift from red to yellow and ultimately to green. In contrast, no color variation is observed when NaLnF4:Er3+ is excited with a 980 nm laser at different power densities. This power-dependent multicolored UCL of NaLnF4:Er3+ excited at 1532 nm can be attributed to the competitive processes of upward pumping and downward relaxation of electrons on the 4I9/2 level of Er3+. By utilizing the unique UC characteristics of NaLnF4:Er3+, its potential utility in anti-counterfeiting applications is demonstrated. Our research highlights the distinctive optical properties of NaLnF4:Er3+ and provides novel insights into the use of luminescent materials in optical anti-counterfeiting technologies.

2.
BJR Case Rep ; 10(3): uaae013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38746651

RESUMEN

T-cell lymphoblastic lymphoma of the breast represents a highly uncommon subtype of non-Hodgkin's lymphoma. This study presents a case of T-cell lymphoblastic lymphoma/acute lymphoblastic leukaemia (T-LBL/ALL) in a 73-year-old female patient exhibiting bilateral breast masses, bilateral axillary lymphadenopathy, swollen lymph nodes in the left neck, and petechiae on the chest. The breast ultrasound revealed heterogeneous hypoechoic findings in the skin layer and subcutaneous tissue of the upper outer quadrant of both breasts. Contrast-enhanced ultrasound (CEUS) demonstrated rapid homogeneous hyperenhancement of bilateral breast masses, and with a small unenhanced area noted in the centre of the left breast mass. The fine-needle aspiration cytology (FNAC) of bilateral axillary lymph nodes revealed metastatic adenocarcinoma, whereas the FNAC of the left cervical lymph nodes indicated non-Hodgkin's lymphoma. Biopsy of the breast mass demonstrated multifocal growth of lymphocyte-like cells, with immunohistochemical analysis confirming T-LBL/ALL. This case study outlines the clinical and CEUS features of breast T-LBL/ALL.

3.
J Inflamm Res ; 17: 3307-3334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800593

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.

4.
Transl Res ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815898

RESUMEN

HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. Current research on HCC using scRNA-seq is predominantly focused on immune and stromal cells. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.

5.
Pediatr Nephrol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801452

RESUMEN

Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.

6.
J Pharm Anal ; 14(4): 100906, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634060

RESUMEN

Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.

7.
Nanoscale ; 16(17): 8661-8671, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38619542

RESUMEN

NaYF4 systems have been widely studied as up-conversion host matrices, and their phase transitions are flexible and worth investigating in great detail. Herein, the evolution of morphology and crystal structure of a Eu3+-doped ß-NaYF4 single nanoparticle heated in an air atmosphere was investigated using in situ transmission electron microscopy (TEM). The annealing process revealed that the hexagonal ß-NaYF4 phase undergoes sequential transformations into high-temperature cubic phases at both 350 °C and 500 °C. The emission characteristics of Eu3+ in the single nanoparticle after heating treatment were also analyzed using Correlative Cathodoluminescence Electron Microscopy (CCLEM). The results of CCLEM suggest a gradual decrease followed by a subsequent increase in structural symmetry. A comprehensive spectroscopic and structural analysis encapsulates the entire transformation process as NaYF4 → YOF → Y2O3. In situ energy dispersive spectroscopy analyses (EDS) support this reaction process. The aforementioned technique yields correlative lattice-resolved TEM images and nanoscale spectroscopic information, which can be employed to assess the structure-function relationships on the nanoscale.

8.
Opt Lett ; 49(7): 1824-1827, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560874

RESUMEN

Lanthanide-doped upconversion (UC) materials have been extensively investigated for their unique capability to convert low-energy excitation into high-energy emission. Contrary to previous reports suggesting that efficient UC luminescence (UCL) is exclusively observed in materials with a wide bandgap, we have discovered in this study that Y2Mo4O15:Yb3+/Tm3+ microcrystals, a narrowband material, exhibit highly efficient UC emission. Remarkably, these microcrystals do not display any four- or five-photon UC emission bands. This particular optical phenomenon is independent of the variation in doping ion concentration, temperature, phonon energy, and excitation power density. Combining theoretical calculations and experimental results, we attribute the vanishing emission bands to the strong interaction between the bandgap of the Y2Mo4O15 host matrix (3.37 eV) and the high-energy levels (1I6 and 1D2) of Tm3+ ions. This interaction can effectively catalyze the UC emission process of Tm3+ ions, which leads to Y2Mo4O15:Yb3+/Tm3+ microcrystals possessing very strong UCL intensity. The brightness of these microcrystals outshines commercial UC NaYF4:Yb3+,Er3+ green phosphors by a factor of 10 and is 1.4 times greater than that of UC NaYF4:Yb3+,Tm3+ blue phosphors. Ultimately, Y2Mo4O15:Yb3+/Tm3+ microcrystals, with their distinctive optical characteristics, are being tailored for sophisticated anti-counterfeiting and information encryption applications.

9.
Int J Biol Macromol ; 265(Pt 2): 130969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508562

RESUMEN

Polyethyleneimine-modified magnetic sugarcane bagasse cellulose film (P-SBC/Fe3O4 film) was simply fabricated for the removal of ibuprofen (IBP), a typical emerging organic contaminant. The P-SBC/Fe3O4 film exhibited an equilibrium adsorption amount of 370.52 mg/g for IBP and a corresponding removal efficiency of 92.63 % under following adsorption conditions: 318 K, pH 4, and 0.25 mg/mL dosage. Thermodynamic studies indicated that adsorption of IBP on the P-SBC/Fe3O4 film was spontaneous (∆G < 0) and endothermic (∆H > 0). The adsorption data conformed to the Freundlich isotherm model and multilayer adsorption model (two layers), and an average of 3-4 active sites on the P-SBC/Fe3O4 film share an IBP molecule. Both the EDR-IDR and AOAS models vividly described the dynamic characteristics of adsorption process. Model fitting results, theoretical calculations, and comprehensive characterization revealed that adsorption is driven by electrostatic interactions between the primary amine of P-SBC/Fe3O4 film and the carboxyl group of IBP molecule, while other weak interactions are also non-ignorable. Furthermore, quantitative calculations based on density functional theory (DFT) underscored the importance of PEI functionalization. In conclusion, P-SBC/Fe3O4 film is an environmentally friendly and cost-effective adsorbent with significant potential for effectively removing IBP, while maintaining its efficacy over multiple cycles.


Asunto(s)
Polietileneimina/análogos & derivados , Saccharum , Contaminantes Químicos del Agua , Adsorción , Celulosa/química , Ibuprofeno , Saccharum/química , Polietileneimina/química , Fenómenos Magnéticos , Cinética , Concentración de Iones de Hidrógeno
10.
BMC Microbiol ; 24(1): 94, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519882

RESUMEN

BACKGROUND: Cervicovaginal microbiome plays an important role in the persistence of HPV infection and subsequent disease development. However, cervicovaginal microbiota varied cross populations with different habits and regions. Identification of population-specific biomarkers from cervicovaginal microbiota and host metabolome axis may support early detection or surveillance of HPV-induced cervical disease at all sites. Therefore, in the present study, to identify HPV-specific biomarkers, cervicovaginal secretion and serum samples from HPV-infected patients (HPV group, n = 25) and normal controls (normal group, n = 17) in Xichang, China were collected for microbiome (16S rRNA gene sequencing) and metabolome (UHPLC-MS/MS) analysis, respectively. RESULTS: The results showed that key altered metabolites of 9,10-DiHOME, α-linolenic acid, ethylparaben, glycocholic acid, pipecolic acid, and 9,12,13-trihydroxy-10(E),15(Z)-octadecadienoic acid, correlating with Sneathia (Sneathia_amnii), Lactobacillus (Lactobacillus_iners), Atopobium, Mycoplasma, and Gardnerella, may be potential biomarkers of HPV infection. CONCLUSION: The results of current study would help to reveal the association of changes in cervicovaginal microbiota and serum metabolome with HPV infections.


Asunto(s)
Microbiota , Infecciones por Papillomavirus , Femenino , Humanos , Vagina , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Metaboloma , Microbiota/genética , Biomarcadores/metabolismo
11.
Front Immunol ; 15: 1354313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426090

RESUMEN

The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Linfocitos Infiltrantes de Tumor , Neoplasias Hepáticas/patología , Inmunoterapia Adoptiva , Transducción de Señal , Microambiente Tumoral
12.
Adv Mater ; : e2313162, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461368

RESUMEN

The freezing shrinkage and dendritic growth are of great importance for various alloys solidified from high-temperature liquids to solids since they dominate microstructure patterns and follow-up processing. However, the microgravity freezing shrinkage dynamics is scarcely explored on the ground as it is hard to suppress the strong natural convection inside liquid alloys. Here, a series of in-orbit solidification experiments is conducted aboard the China Space Station with a long-term stable 10-5 g0 microgravity condition. The highest temperature up to 2265 K together with substantial liquid undercoolings far from a thermodynamically stable state are attained for both Nb82.7Si17.3 and Zr64V36 refractory alloys. Furthermore, the solidification under microgravity of a droplet is simulated to reveal the liquid-solid interface migration, temperature gradient, and flow field. The microgravity solidification process leads to freezing shrinkage cavities and distinctive surface dendritic microstructure patterns. The combined effects of shrinkage dynamics and liquid surface flow in outer space result in the dendrites growing not only along the tangential direction but also along the normal direction to the droplet surface. These space experimental results contribute to a further understanding of the solidification behavior of liquid alloys under a weaker convection condition, which is often masked by gravity on the ground.

13.
Angew Chem Int Ed Engl ; 63(15): e202400312, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38306324

RESUMEN

The metastable liquid properties and chemical bonds beyond 2000 K remain a huge challenge for ground-based research on liquid materials chemistry. We show the strong undercooling capability, metastable liquid properties and surface wave patterns of refractory Nb-Si and Zr-V binary alloys explored in space environment. The floating droplet of Nb82.7Si17.3 eutectic alloy superheated up to 2338 K exhibited an extreme undercooling of 437 K, approaching the 0.2TE threshold for homogeneous nucleation of liquid-solid reaction. The microgravity state endowed alloy droplets with nearly perfect sphericity and thus ensured the high accuracy to determine metastable undercooled liquid properties. A special kind of swirling flow was induced for liquid alloy owing to Marangoni convection, which resulted in the spiral microstructures on Zr64V36 alloy surface during liquid-solid phase transition. The coupled impacts of surface nucleation and surface flow brought in a novel olivary shape for these binary alloys. Furthermore, the chemical bonds and atomic structures of high temperature liquids were revealed to understand the liquid properties in outer space circumstances.

14.
Int J Biol Sci ; 20(4): 1389-1409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385072

RESUMEN

UPP1, a crucial pyrimidine metabolism-related enzyme, catalyzes the reversible phosphorylation of uridine to uracil and ribose-1-phosphate. However, the effects of UPP1 in bladder cancer (BLCA) have not been elucidated. AKT, which is activated mainly through dual phosphorylation (Thr308 and Ser473), promotes tumorigenesis by phosphorylating downstream substrates. This study demonstrated that UPP1 promotes BLCA cell proliferation, migration, invasion, and gemcitabine resistance by activating the AKT signaling pathway in vitro and in vivo. Additionally, UPP1 promoted AKT activation by facilitating the binding of AKT to PDK1 and PDK2 and the recruitment of phosphatidylinositol 3,4,5-triphosphate to AKT. Moreover, the beneficial effects of UPP1 on BLCA tumorigenesis were mitigated upon UPP1 mutation with Arg94 or MK2206 treatment (AKT-specific inhibitor). AKT overexpression or SC79 (AKT-specific activator) treatment restored tumor malignancy and drug resistance. Thus, this study revealed that UPP1 is a crucial oncogene and a potential therapeutic target for BLCA and that UPP1 activates the AKT signaling pathway and enhances tumorigenesis and drug resistance to gemcitabine.


Asunto(s)
Gemcitabina , Neoplasias de la Vejiga Urinaria , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Carcinogénesis , Proliferación Celular
15.
Cancer Gene Ther ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351139

RESUMEN

RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and provide new insights into cancer therapy.

16.
Biomed Pharmacother ; 173: 116336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412717

RESUMEN

OBJECTIVE: Protein disulfide isomerase A3 (PDIA3) promotes the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum. PDIA3 is overexpressed in most tumors, and it may become a biomarker of cancer prognosis and immunotherapy. Our study aims to detect the expression level of PDIA3 in gastric cancer (GC) and its association with GC development as wells as the underlying mechanisms. METHODS: GC cell lines with PDIA3 knockdown by siRNA, CRISPR-cas9 sgRNAs or a pharmacological inhibitor of LOC14 were prepared and used. PDIA3 knockout GC cells were established by CRISPR-cas9-PDIA3 system. The proliferation, migration, invasion and cell cycle of GC cells were analyzed by cell counting kit-8 assay, wound healing assay, transwell assay and flow cytometry, respectively. Immunodeficient nude mice was used to evaluate the role of PDIA3 in tumor formation. Quantitative PCR and western blot were used for examining gene and protein expressions. RNA sequencing was performed to see the altered gene expression. RESULTS: The expressions of PDIA3 in GC tissues and cells were increased significantly, and its expression was negatively correlated with the three-year survival rate of GC patients. Down-regulation of PDIA3 by siRNA, LOC14 or CRISPR-cas9 significantly inhibited proliferation, invasion and migration of GC cells TMK1 and AGS, with cell cycle arrested at G2/M phase. Meanwhile, decreased PDIA3 significantly inhibited growth of tumor xenograft in vivo. It was found that cyclin G1 (encoded by CCNG1 gene) expression was decreased by downregulation of PDIA3 in GC cells both in vitro and in vivo. In addition, protein levels of other cell cycle related factors including cyclin D1, CDK2, and CDK6 were also significantly decreased. Further study showed that STAT3 was associated with PDIA3-mediated cyclin G1 regulation. CONCLUSION: PDIA3 plays an oncogenic role in GC. Our findings unfolded the functional role of PDIA3 in GC development and highlighted a novel target for cancer therapeutic strategy.


Asunto(s)
Benzotiazoles , Neoplasias Gástricas , Animales , Ratones , Humanos , Neoplasias Gástricas/patología , Regulación hacia Abajo/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Ratones Desnudos , Ciclina G1/genética , ARN Guía de Sistemas CRISPR-Cas , Proliferación Celular/genética , Línea Celular Tumoral , Ciclo Celular/genética , ARN Interferente Pequeño/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
17.
Phytochem Anal ; 35(4): 860-872, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38361458

RESUMEN

INTRODUCTION: Liuweizhiji Gegen-Sangshen (LGS) oral liquid is a Chinese patent medicine that is widely used for the prevention and treatment of alcoholic liver disease in clinical practice. However, the chemical complexity of LGS has not yet been investigated. OBJECTIVE: The aim of this study was to rapidly identify chemical constituents of LGS and establish a quality control method based on fingerprint and quantitative analysis. METHODOLOGY: A comprehensive strategy was used by combining qualitative analysis by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and fingerprint analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). RESULTS: A total of 162 chemical components in LGS, including 91 flavonoids, 31 organic acids, and 20 phenolic compounds, were identified or preliminarily characterized in both positive and negative ion modes based on the UPLC-Q-TOF-MS results. Of these, 37 were confirmed with the reference standards. In fingerprint analysis, 23 peaks were chosen as common peaks and used to evaluate the similarity of different batches of LGS. Subsequently, a rapid quantification method was optimized and validated for the simultaneous determination of multiple chemical markers in LGS. The validated quantitative method was successfully used to analyze different batches of LGS samples. CONCLUSION: The proposed comprehensive strategy combining HPLC-DAD fingerprinting and multi-component quantification demonstrated satisfactory results with high efficiency, accuracy, and reliability. This can be used as a reference for the overall quality consistency evaluation of Chinese patent medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Control de Calidad , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Flavonoides/análisis , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Administración Oral , Fenoles/análisis
19.
Commun Biol ; 7(1): 245, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424181

RESUMEN

PRKN is a key gene involved in mitophagy in Parkinson's disease. However, recent studies have demonstrated that it also plays a role in the development and metastasis of several types of cancers, both in a mitophagy-dependent and mitophagy-independent manner. Despite this, the potential effects and underlying mechanisms of Parkin on bladder cancer (BLCA) remain unknown. Therefore, in this study, we investigated the expression of Parkin in various BLCA cohorts derived from human. Here we show that PRKN expression was low and that PRKN acts as a tumor suppressor by inhibiting the proliferation and migration of BLCA cells in a mitophagy-independent manner. We further identified Catalase as a binding partner and substrate of Parkin, which is an important antioxidant enzyme that regulates intracellular ROS levels during cancer progression. Our data showed that knockdown of CAT led to increased intracellular ROS levels, which suppressed cell proliferation and migration. Conversely, upregulation of Catalase decreased intracellular ROS levels, promoting cell growth and migration. Importantly, we found that Parkin upregulation partially restored these effects. Moreover, we discovered that USP30, a known Parkin substrate, could deubiquitinate and stabilize Catalase. Overall, our study reveals a novel function of Parkin and identifies a potential therapeutic target in BLCA.


Asunto(s)
Proteínas Quinasas , Neoplasias de la Vejiga Urinaria , Humanos , Catalasa/genética , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Vejiga Urinaria/genética
20.
Adv Healthc Mater ; : e2400113, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412500

RESUMEN

Recently, nanotechnology-based drug delivery platforms in treating pulmonary arterial hypertension (PAH) have gradually emerged. However, large mechanical stress and shear stress in blood vessels greatly affect the retention of nanopreparative materials at lesion sites, severely limiting nanotechnology-based drug delivery. Herein, a stimuli-responsive nanocraft is rationally designed by actively anchoring E-selectin overexpressed on pulmonary arterial endothelial cells (PAECs), under hypoxic conditions, allowing effective accumulation and retention of the drug at the lesion site. Briefly, a nitrobenzene group is incorporated into the framework of a nanocarrier, and then it is simultaneously linked with chitosan. Additionally, the surface of the nanocarrier with sialic acid (SA) and encapsulated the clinically used drug ambrisentan (Am), which enables the anchoring of E-selectin and subsequent drug delivery is modifed. This system facilitates intercellular transport to pulmonary artery smooth muscle cells (PASMCs) when targeting PAECs and specifically responds to a reductive hypoxic microenvironment with elevated nitroreductase in PASMCs. Moreover, compared with free Am, nanoencapsulation and SA-PEG2000 -NH2 prolong the blood circulation time, achieving better therapeutic outcomes in preventing vascular remodeling and reversing systolic dysfunction. The originality and contribution of this work reveal the promising value of this pulmonary arterial anchoring stimuli-responsive nanocraft as a novel therapeutic strategy for satisfactory PAH treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA