Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Hazard Mater ; 474: 134784, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843635

RESUMEN

Both adsorption and oxidation occur and contribute to organics removal in carbonaceous materials based advanced oxidation processes, while the correction of adsorption and oxidation, and the role of adsorption in the veritable removal of organic are not clear. Herein, we investigated the performance of carbamazepine (CBZ) removal by peroxymonosulfate (PMS) activated by magnetic Fe-doped biochar through two models of pre-adsorption oxidation and synchronous adsorption oxidation processes. The adsorption process was better fitted by pseudo-second-order kinetic model and the adsorption mechanism was obtained by comprehensive analysis of equilibrium adsorption capacities, surface functional groups, specific surface area, pore volume, and ID/IG value. It is noted that pre-adsorption highly inhibited the further oxidation of CBZ in 0.5Fe@LSBC700/PMS system due to the occupied catalytic active sites. Total CBZ removal in pre-adsorption oxidation (45 %) was inferior to synchronous adsorption oxidation (∼100 %), as well as the veritable CBZ oxidation removal of 27 % for pre-adsorption oxidation vs ∼100 % in synchronous adsorption oxidation at 30 min. Oxidation degradation of CBZ based on radical oxidation was identified by quenching experiments and electron paramagnetic resonance measurements. This work is conducive to identifying the role of adsorption during the removal of organics in the adsorption-oxidation process, as well as veritable adsorption and oxidation removal of organics.

2.
Water Res ; 250: 121074, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160648

RESUMEN

Release of phosphorus (P) from the sediments plays a critical role in the eutrophication of aquatic environments. Humic acids (HA), as the main form of carbon storage in the sediments, has essential impacts on the biogeochemical cycle of phosphorus in aquatic systems. Nevertheless, previous studies mainly concentrated on the competitive adsorption of HA solution and P on metal oxides and soils, with little attention paid to the effects of insoluble humic acids (IHA) on P sorption by and release from the sediments. Herein, an investigation on the rivers and lakes in Sichuan Province, China, found that there was a significantly positive correlation between the maximum P adsorption capacity (Qmax) of sediments and IHA contents (p < 0.01), but a significantly negative correlation between the zero equilibrium P concentration (EPC0) and IHA concentrations (p < 0.01). This indicated that IHA might have an inhibitory effect on the release of P from the sediments, which was verified by batch adsorption experiments and static incubation experiments. Adsorption experiments indicated that IHA can promote P adsorption by sediments. With the increase of IHA addition (from 0 to 20 mg/g) in the sediments, Qmax of sediments increased (from 0.516 to 0.911 mg/g), while EPC0 decreased greatly (from 0.264 to 0.005 mg/L). Increases in Fe (Ⅲ) bound-P, Al bound-P and humic bound-P caused by IHA were responsible for this promoting effect. Incubation experiments illustrated that IHA addition can efficiently inhibit P release from the sediments. After 32 days incubation, P concentration in the overlying water of control group (without IHA addition) was 0.651 mg/L, which was 13.29-40.69 times higher than those (0.016-0.049 mg/L) in the test groups (with 5 %-20 % IHA addition). The analysis of P species in sediments showed that transformation from loosely adsorbed-P and Fe (Ⅲ) bound-P to Al bound-P and humic bound-P was responsible for this inhibition of P release by IHA. This study demonstrated that IHA, differing from readily degradable or dissolved organic matter, have great inhibitory effects on internal P release, which provided a novel insight into the association between carbon burial and internal P release and even the management of water eutrophication.


Asunto(s)
Sustancias Húmicas , Contaminantes Químicos del Agua , Sustancias Húmicas/análisis , Monitoreo del Ambiente , Fósforo/análisis , Contaminantes Químicos del Agua/química , Sedimentos Geológicos/química , Lagos/análisis , Adsorción , China , Eutrofización , Agua/análisis , Carbono/análisis
3.
Heliyon ; 9(7): e17903, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539201

RESUMEN

The Yellow River Basin in China has the world's most serious soil erosion problem. The Yellow River Basin in Sichuan Province (YRS), as the upper reaches of the Yellow River, and its water conservation (WC) capacity greatly affects the ecological environment of the downstream basin. In recent years, YRS has received more and more attention, and numerous policies have been developed to improve local WC. However, there is a vacancy in the long-term research of WC in the YRS due to the lack of in-situ data. This study quantitatively evaluated the WC of YRS from 2001 to 2020 through Google Earth Engine (GEE) and analyzed the spatio-temporal variations of WC and land cover (LC). CA-Markov predicted the LC and WC in 2025 under three scenarios to assess the contribution of different scenarios to WC. The WC in YRS fluctuated from 1.93 to 6.77 billion m3. The climate is the dominant factor of WC change, but the effect of LC on WC is also evident. The WC capacity increases with vegetation coverage and height. The WC capacity of forests per km2 exceeds 600 mm, while that of grasslands is about 250 mm, and barren can cause around 300 mm of WC loss. In 2025, the WC in YRS may exceed 7.5 billion m3, but the past ecological management mode should be transformed. Improving the quality of land use and converting grasslands to forests is better than reducing cropland to improve WC.

4.
J Hazard Mater ; 459: 132117, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37531769

RESUMEN

In this study, we demonstrate that Fe(III)-doped g-C3N4 can efficiently activate peracetic acid (PAA) to degrade electron-rich pollutants (e.g., sulfamethoxazole, SMX) over a wide pH range (3-7). Almost ∼100% high-valent iron-oxo species (Fe(V)) was generated and acted as the dominant reactive species responsible for the micropollutants oxidation based on the analysis result of quenching experiments, 18O isotope-labeling examination and methyl phenyl sulfoxide (PMSO) probe method. Electrochemical testing (e.g., amperometric i-t and linear sweep voltammetry (LSV)) and density functional theory (DFT) calculations illustrated that the main active site Fe atom and PAA underwent electron transfer to form Fe(V) for attacking SMX. Linear free energy relationship (LFER) between the pseudo-first-order rates of different substituted phenols (SPs) and the Hammett constant σ+ depicted the electrophilic oxidation properties. The selective oxidation of Fe(V) endows the established system remarkable anti-interference capacity against water matrices, while the Fe(V) lead to the formation of iodinated disinfection by-products (I-DBPs) in the presence of I-. Fe(III)-doped g-C3N4/PAA system showed excellent degradation efficiency of aquaculture antibiotics. This study enriches the knowledge and research of high-valent iron-oxo species and provides a novel perspective for the activation of PAA via heterogeneous iron-based catalysts and practical environmental applications.

5.
Chemosphere ; 321: 138026, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731671

RESUMEN

Metal leaching is a key issue in cobalt-based catalysts/PMS systems, which results in the decline of catalytic ability and serious secondary pollution. Hence, a nitrogen-rich carbon framework with cobalt node (Co-NC-920) with low cobalt leaching was synthesized based on zeolite imidazole framework (ZIF) and g-C3N4 to activate peroxymonosulfate (PMS) for the degradation of carbamazepine (CBZ). With the restriction of nitrogen-rich carbon framework, cobalt can disperse better and form stable cobalt-nitrogen bonds, thus only 0.09 mg/L cobalt ions were leached in the solution. More than 99.9% of CBZ can be removed within 30 min of PMS addition. Further investigation revealed that 1O2, SO4•- and high-valent cobalt species were primarily responsible for CBZ degradation in the Co-NC-920/PMS system and different reactive oxygen species (ROS) were distinguished and quantified, finding 1O2 was predominant. The degradation process was realized by the coexistence of free radicals and non-free radicals. Moreover, CBZ degradation capacity of the catalyst was evaluated under the influence of common anions and in actual waterbody. Finally, the possible degradation pathways of CBZ were proposed and the toxicity of the intermediates was analyzed. This work provides a new approach for the synthesis of cobalt-based nitrogen-rich carbon catalysts with low leaching and high efficient.


Asunto(s)
Carbono , Cobalto , Carbono/química , Cobalto/química , Nitrógeno , Peróxidos/química , Carbamazepina
6.
PLoS One ; 17(8): e0272767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951665

RESUMEN

Feature extraction of electrical load plays a vital role in providing a reliable basis and guidance for power companies. In this paper, we propose a novel clustering algorithm named the Density-based Matrix Transformation (DBMT) Clustering method to extract features (peaks, valleys and trends) of electrical load curves. The main objective of the algorithm is to reorder the data items until the data items belonging to the same cluster are organized together; that is, the adjacent matrix is rearranged to the type of block diagonal. This method adaptively determines the number of clusters and filters out noise without input global parameters. Moreover, for the specific characteristics of raw electrical load data, we propose a variant of Dynamic Time Warp (DTW) distance, dsDTW, which aligns the peaks, valleys and trends of load curves meanwhile dealing with missing values in different situations. After feeding the dsDTW adjacent matrix to DBMT, the results indicate that our proposal can accurately extract the feature of the load curves compared to different clustering methods.


Asunto(s)
Algoritmos , Ruido , Análisis por Conglomerados , Electricidad
7.
J Hazard Mater ; 435: 128899, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35468392

RESUMEN

In this study, natural molybdenite (MoS2) was applied to activate peroxymonosulfate (PMS) for the removal of atrazine (ATZ) and its degradation mechanism was investigated. Molybdenite exhibits superior catalytic performance. The best condition for atrazine degradation efficiency (>99%) was obtained with molybdenite concentration of 0.4 g/L, PMS concentration of 0.1 mM, and ATZ concentration of 12 µM within 10 min under experimental conditions. Electron paramagnetic resonance (EPR) test and chemical probe test further proved that HO• and SO4•- played important roles in the molybdenite/PMS system, and SO4•- was dominant. Meanwhile, Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) tests showed that sulfur vacancies and edge sulfur played important roles in the system. Edge sulfur was conducive to Mo4+ exposure, while sulfur vacancy facilitated electron transfer and reduced Mo6+ back to Mo4+. Combined with DFT calculation, the role of sulfur in the degradation process was verified. Besides, five ATZ degradation pathways were proposed. Finally, the degradation ability of the molybdenite/PMS system for different pollutants and in actual water bodies was also explored. This work provided ideas for exploring the degradation of organic contaminants by natural minerals.


Asunto(s)
Atrazina , Contaminantes Químicos del Agua , Atrazina/química , Peróxidos/química , Azufre , Contaminantes Químicos del Agua/química
8.
Water Res ; 217: 118370, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35405553

RESUMEN

Co-transport of colloidal substances and pollutants is a pivotal link that significantly affects the environment of coastal groundwater. The effect of colloid mobilization and aquifer pore structure change on heavy metal transport driven by seawater-freshwater interface dynamics is not fully understood. In this study, packed column experiments were conducted to model the seawater intrusion (SWI) and freshwater replenishment (FWR) processes using a sampled medium from a coastal sandy aquifer. Hydrodynamic, hydrochemical variables, and heavy metal (Pb, Cu, Cd) transport during the propagation of the seawater-freshwater interface were tested and analyzed. During the SWI stage, cation exchange induced heavy metal liberations, and it developed peak concentrations synchronized with the seawater-freshwater interface at the pore volume of 1.00. The colloid-facilitated transport for heavy metals was the predominant mechanism in the FWR stage, characterized by a peak release lagging the interface propagation by approximately 0.5 pore volumes. Because the colloidal fraction was mobilized during aquifer desalination, it lagged behind the decline of the salinity gradient. Furthermore, Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations explained that the replenishment decreased the depth of the secondary energy minimum of the colloids; meanwhile, the thickness of the electrical double layer increased from 0.63 nm to 10.14 nm, resulting in a repulsive energy barrier up to 3,213 kT. The transport of colloids led to a reduction in porosity from 18.16% to 2.28% of the total immobile domain. At these times, the dimension of the transported colloids evolved, showing a size-selective transport and therefore regulating the total emission fluxes of the heavy metals. These mechanisms were proposed to be incorporated in colloid filtration theory for targeting the coastal scenario.


Asunto(s)
Agua Subterránea , Metales Pesados , Coloides/química , Agua Dulce , Agua Subterránea/química , Metales Pesados/análisis , Agua de Mar
9.
PLoS One ; 17(1): e0262883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073372

RESUMEN

In the process of intelligent system operation fault diagnosis and decision making, the multi-source, heterogeneous, complex, and fuzzy characteristics of information make the conflict, uncertainty, and validity problems appear in the process of information fusion, which has not been solved. In this study, we analyze the credibility and variation of conflict among evidence from the perspective of conflict credibility weight and propose an improved model of multi-source information fusion based on Dempster-Shafer theory (DST). From the perspectives of the weighting strategy and Euclidean distance strategy, we process the basic probability assignment (BPA) of evidence and assign the credible weight of conflict between evidence to achieve the extraction of credible conflicts and the adoption of credible conflicts in the process of evidence fusion. The improved algorithm weakens the problem of uncertainty and ambiguity caused by conflicts in the information fusion process, and reduces the impact of information complexity on analysis results. And it carries a practical application out with the fault diagnosis of wind turbine system to analyze the operation status of wind turbines in a wind farm to verify the effectiveness of the proposed algorithm. The result shows that under the conditions of improved distance metric evidence discrepancy and credible conflict quantification, the algorithm better shows the conflict and correlation among the evidence. It improves the accuracy of system operation reliability analysis, improves the utilization rate of wind energy resources, and has practical implication value.


Asunto(s)
Algoritmos , Modelos Teóricos , Energía Renovable , Viento , Humanos
10.
Psychol Res Behav Manag ; 14: 1603-1613, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675701

RESUMEN

PURPOSE: This study examines and analyses the impact of leader-member exchange differentiation (LMXD) on employee safety performance. METHODS: A quantitative study was conducted on a sample of 357 Chinese construction industry employees through a structured questionnaire. The research hypothesis was tested by using the structural equation modelling (SEM) technique. RESULTS: The results showed that LMXD could directly and positively affect the negative emotions and indirectly affect the safety performance of employees through the mediating effect of negative emotions and work engagement. Interpersonal trust has a moderating impact on the relationship between LMXD and negative emotions. CONCLUSION: This study contributes to the literature on organizational behavior. Employee workplace safety is a great challenge in the construction industry. Enterprises should pay attention to the negative impact of LMXD. A fair working environment has significant importance to the employee's safety.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33630265

RESUMEN

Blackwater events are frequently reported over the world and become a serious environmental problem. However, the mechanisms of blackwater occurrence are not fully understood yet. This study simulated the process of blackwater with the combined pollution in an orthogonal experiment, which had 4 factors (TOC, TP, NH4+-N, and NO3--N) and 4 levels (None, Low, Middle, and High). Results showed that the process of water condition changes was divided into two parts, which were "exogenous" and "algae-derived" blackwater, and the influence of four different pollutants on the occurrence of the blackwater was ranked as follows: TOC > TP > NO3--N > NH4+-N. With the increase of organic matter addition, the anaerobic condition in water was prolonged and the concentration of Fe2+ had a significant increase. In addition, under the None phosphorus condition, the descent rates of DO and COD in the water were reduced, and the algae bloom was obviously deferred. Moreover, the addition of organic matter or phosphorus changed the microbial community structure and led to different water processes. Particularly, only on the condition of the high content of TOC and phosphorus, the diversity of sulfate-reducing bacteria (e.g., Pseudomonas, Paludibacter, and Bacteroides) increased significantly, which accounted for 51.4%, causing the significant production of S2- in the water. Water's lack of phosphorus showed a low rate of decomposition of organic matter, which might be the result of a considerable increase in the abundance of aerobic Trichococcus and Malikia. This study shows that organic matter and phosphorus have synergistic effect on blackwater occurrence. In the treatment of blackwater, the exogenous pollutant control should reduce the discharge of organic pollutants, and endogenous control should focus on phosphorus abatement and reduce nitrogen control.

12.
Environ Sci Pollut Res Int ; 28(21): 27067-27083, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33501583

RESUMEN

As the remote sensing technology develops, there are increasingly more kinds of remote sensing images available from different sensors. High-resolution remote sensing images are widely used in the detection of land cover/land change due to their plenty of characteristics of a specific feature in terms of spectrum, shape, and texture. Current studies regarding cultivated land resources that are the material basis for the human beings to survive and develop focus on the method to accurately obtain the quantity of cultivated land in a region and understand the conditions and the trend of change of the cultivated land. Pixel-based method and object-oriented method are the main methods to extract cultivated land in remote sensing field. Pixel-based method ignores high-level image information, while object-oriented method takes the image spot after image segmentation as the basic unit of information extraction, which can make full use of spectral features, spatial features, semantic features, and contextual features. Image segmentation is a key step of object-oriented method; the core problem is how to obtain the optimal segmentation scale. Traditional methods for determining the optimal segmentation scale of features (such as the homogeneity-heterogeneity method, the maximum area method, and the mean variance method), in which only the spectral and geometrical characteristics are considered, while the textural characteristics are neglected. Based on this, the Quickbird and unmanned aerial vehicle (UAV) images obtained in Xiyu Village, Pengzhou City, Sichuan Province, China, were selected as experimental objects, and the texture mean and spectral grayscale mean method (MANC method based on GLCM), which comprehensively considered the spectrum, shape, and texture features, was proposed to calculate the optimal segmentation scale of cultivated land in the study area. The error segment index (ESI) and centroids distance index (CDI) were adopted to evaluate image segmentation quality based on the method of area and position differences. The experimental results show that the MANC method based on GLCM can obtain higher segmentation precision than the traditional methods, and the segmentation results are in good agreement with the cultivated land boundary obtained by visual interpretation.


Asunto(s)
Tecnología de Sensores Remotos , China , Humanos
13.
RSC Adv ; 11(9): 4942-4951, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424425

RESUMEN

To avoid the loss of catalytic material powder, a loaded catalytic material of TiO2 with basalt fiber as the carrier (TiO2@BF) was synthesized by an improved sol-gel method. The TiO2@BF was doped with different contents of N, Fe and Zn elements and was used to degrade rhodamine B (RhB) under ultraviolet light. The physical characterization analysis indicated that the co-doping of the N, Fe and Zn elements had the effects of reducing grain size, increasing sample surface area, and narrowing the electronic band gap. The electronic band gap of nitrogen-iron-zinc co-doped TiO2@BF (N/Fe/Zn_TiO2@BF) was 2.80 eV, which was narrower than that of TiO2@BF (3.11 eV). The degradation efficiency of RhB with N/Fe/Zn_TiO2@BF as a photocatalyst was 4.3 times that of TiO2@BF and its photocatalytic reaction was a first-order kinetic reaction. Quenching experiments suggested that the reactive species mainly include photoinduced holes (h+), superoxide radicals (˙O2 -) and hydroxyl radicals (˙OH). In brief, this study provides a prospective loaded catalytic material and routine for the degradation of organic contaminants in water by a photocatalytic process.

14.
J Hazard Mater ; 399: 123103, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937720

RESUMEN

Expanded graphite (EG) immobilized nickel ferrite (NiCo2O4) was successfully constructed by a simple hydrothermal approach and applied for the degradation of sulfamethoxazole (SMX) in model wastewater by peroxymonosulfate (PMS) activation. The features of prepared catalysts were characterized by SEM, TEM, EDS, XRD, BET, TPD and XPS techniques. The influences of several critical parameters including the prepared NiCo2O4-EG dosages, PMS concentrations, temperature, initial solution pH and inorganic ions on SMX removal were studied in details. In particular, the synthesized NiCo2O4-EG exhibits excellent catalytic performances for SMX depredation over a wide pH range (pH 3.0-11.0). Besides, the transformation of various reactive oxygen species (SO4-, HO, O2- and 1O2) with the change of initial pH was investigated by the electron paramagnetic resonance (EPR) and quenching tests. In addition, twelve major degradation intermediates of SMX were detected by UPLC-QTOF-MS/MS. Finally, the PMS activation mechanism in NiCo2O4-EG/PMS system by the synergistic coupling of EG and NiCo2O4 were put forward. In brief, this work provided a promising and potential catalyst for PMS activation to remove SMX from wastewater.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Peróxidos , Sulfametoxazol , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 689: 47-56, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260898

RESUMEN

The shale gas flowback and produced water (FPW) from hydraulic fracturing in the Sichuan province of China has relatively low to moderate levels of total dissolved solids (<20 g/L) and organics (<50 mg/L of dissolved organic carbon). As such, a combined ultrafiltration (UF), reverse osmosis (RO) system can be successfully applied to desalinate this feed water with the goal of reuse. However, the concentration of influent organic matter and particulates in the UF and RO stage is high, and the overall ionic and organics composition is highly complex, so that the membrane processes do not perform well, also due to fouling. To ensure the long-term and efficient operation of the UF-RO stages, a combined pretreatment of the FPW with coagulation and adsorption was investigated. The effect of different parameters on the performance on the system was studied in detail. Overall, the coagulation-adsorption pre-treatment greatly reduced fouling of the membrane processes, thanks to the high removal rate of turbidity (98.8%) and dissolved organic carbon (86.3%). The adsorption of organic matter by powdered activated carbon was best described by the Freundlich equilibrium model, with a pseudo second-order model representing the adsorption kinetics. Also, the various ions had competitive removal rates during the adsorption step, a phenomenon reported for the first time for FPW treatment. Also, an optimal dose of activated carbon existed to maximize fouling reduction and effluent quality. The overall treatment system produced a high-quality water streams, suitable for reuse.

16.
Huan Jing Ke Xue ; 39(1): 109-116, 2018 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-29965671

RESUMEN

This study analyzed the organic distribution characteristics of original and treated water and their impacts on drinking water quality using a conventional water treatment process in the typical water supply sources for towns in the southwest hilly area of China. The results showed that the water supply source in this area is micro-polluted water. Dissolved organics of low molecular weight accounted for the great majority of the organics, with the proportion ranging from 50% to 80%. There were 53 kinds and 14 classes of organics, including alkanes, esters, phenolic compounds, and benzenes, with the proportion from 80% to 90%. The amounts of organic acid, alkene, alcohols, and aldehyde were small, while the amounts of dichloromethane, phenol, and dibutyl-phthalate were relatively high. Herbicides, food additives, and antibiotics were detected, such as terbuthylazine, 2,6-di-tert-butyl-p-cresol, and nalidixic acid. The conventional water treatment process could efficiently remove the compounds with molecular weights higher than 10×103 and organic acid; however, it was limited greatly in its removal of alkanes, esters, phenolic compounds, and benzenes.


Asunto(s)
Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Calidad del Agua , China , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA