Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Total Environ ; 946: 174436, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964403

RESUMEN

Semi-aerobic aged refuse biofilters (SAARB) are commonly-used biotechnologies for treating landfill leachate. In actual operation, SAARB often faces harsh conditions characterized by high concentrations of chemical oxygen demand (COD) and Cl-, as well as a low carbon-to-nitrogen ratio (C/N), which can disrupt the microbial community within SAARB, leading to operational instability. Maintaining the stable operation of SAARB is crucial for the efficient treatment of landfill leachate. However, the destabilization mechanism of SAARB under harsh conditions remains unclear. To address this, the study simulated the operation of SAARB under three harsh conditions, namely, high COD loading (H-COD), high chloride ion (Cl-) concentration environment (H-Cl-), and low C/N ratio environment (L-C/N). The aim is to reveal the destabilization mechanism of SAARB under harsh conditions by analyzing the fluorescence characteristics of effluent DOM and the microbial community in aged refuse. The results indicate that three harsh conditions have different effects on SAARB. H-COD leads to the accumulation of proteins; H-Cl- impedes the reduction of nitrite nitrogen; L-C/N inhibits the degradation of humic substances. These outcomes are attributed to the specific effects of different factors on the microbial communities in different zones of SAARB. H-COD and L-C/N mainly affect the degradation of organic matter in aerobic zone, while H-Cl- primarily impedes the denitrification process in the anaerobic zone. The abnormal enrichment of Corynebacterium, Castellaniella, and Sporosarcina can indicate the instability of SAARB under three harsh conditions, respectively. To maintain the steady operation of SAARB, targeted acclimation of the microbial community in SAARB should be carried out to cope with potentially harsh operating conditions. Besides, timely mitigation of loads should be implemented when instability characteristics emerge, and carbon sources and electron donors should be provided to restore treatment performance effectively.

2.
Food Chem ; 457: 140185, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38936128

RESUMEN

The encapsulation efficiency (EE%) reflects the amount of bioactive components that can be loaded into nanoliposomes. Obtaining a suitable nanoliposome stabiliser may be the key to improving their EE%. In this study, three polyphenols were screened as stabilisers of nanoliposomes with high nisin EE%, with curcumin nanoliposomes (Cu-NLs) exhibiting the best performance (EE% = 95.94%). Characterizations of particle size, PDI and zeta potential indicate that the Cu-NLs had good uniformity and stability. TEM found that nisin accumulated at the edges of the Cu-NLs' phospholipid layer. DSC and FT-IR revealed that curcumin was involved in the formation of the phospholipid layer and altered its structure. FT-IR and molecular docking simulations indicate that the interactions between curcumin and nisin are mainly hydrogen bonding and hydrophobic. In whole milk, Cu-NLs effectively protected nisin activity. This study provides an effective strategy for improving the EE% of nanoliposomes loaded with nisin and other bacteriocins.

3.
J Control Release ; 372: 778-794, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38936744

RESUMEN

Alopecia areata affects over 140 million people worldwide and causes severe psychological distress. The Janus kinase (JAK) inhibitor, tofacitinib, shows significant potential in therapeutic applications for treating alopecia areata; however, the systemic adverse effects of oral administration and low absorption rate at the target site limit its application. Hence, to address this issue, we designed topical formulations of tofacitinib-loaded cationic lipid nanoparticles (TFB-cNLPs) with particle sizes of approximately 200 nm. TFB-cNLPs promoted percutaneous absorption and hair follicle targeting in an ex vivo pig ear model. TFB-cNLP decreased IFN-γ-induced alopecia areata symptoms in an in vitro follicle model by blocking the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. It also reduced the number of CD8+NKG2D+T cells in a C3H mouse model of alopecia areata in vivo, thereby inhibiting the progression of alopecia areata and reversing hair loss. These findings suggest that TFB-cNLP enhanced hair follicle targeting and has the potential for topical treatment or prevention of alopecia areata.

4.
Discov Med ; 36(185): 1280-1288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926114

RESUMEN

BACKGROUND: Kinesin family member 26B (KIF26B) has been closely linked to the occurrence and progression of various tumors. However, there is limited research on its role in oral squamous cell carcinoma (OSCC). This article aims to investigate the expression levels and mechanisms of KIF26B in OSCC. METHODS: Real time quantity polymerase chain reaction (RT-qPCR) and Western blot analyses were conducted to assess the expression levels of KIF26B in 35 OSCC specimens and their corresponding non-cancerous tissues. Overexpression and silencing of KIF26B were achieved in HSC6 and SCC25 cells, respectively, resulting in the establishment of KIF26B-overexpressing and si-KIF26B cell lines, designated as the KIF26B group and si-KIF26B group. Proliferation assays using 5-Ethynyl-2'-deoxyuridine (EdU) labeling and clone formation were performed to evaluate the proliferative capacity of cells in these groups. The invasive and migratory abilities of cells in the KIF26B and si-KIF26B groups were assessed using Transwell assay. Additionally, the influence of KIF26B on the glycogen synthase kinase (GSK)-3ß/ß-catenin pathway was investigated through Western blot analysis. RESULTS: According to the results of RT-qPCR and Western blot analyses, the expression of KIF26B was predominantly higher in OSCC tissues compared to normal tissues (p < 0.01). Overexpression of KIF26B notably accelerated cell migration, invasion, and proliferation (p < 0.01), whereas knockdown of KIF26B significantly inhibited these processes (p < 0.01). Additionally, KIF26B overexpression led to increased levels of active ß-catenin, p-GSK-3, and c-myc (p < 0.01), while KIF26B silencing decreased the levels of these proteins (p < 0.01). CONCLUSION: Our findings suggest that KIF26B may play a role in the pathogenesis and progression of OSCC as an oncogene. This study establishes a foundation for the identification of potential therapeutic targets for OSCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Proliferación Celular , Cinesinas , Neoplasias de la Boca , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular/genética , Femenino , Masculino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Movimiento Celular/genética , Anciano , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , beta Catenina/genética
5.
Environ Pollut ; 349: 123965, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614426

RESUMEN

Hydrolysis, alcoholysis and ammonolysis are viable routes for the efficient degradation and recycling of polyethylene naphthalate (PEN) plastic waste. Various possible hydrolysis/alcoholysis/ammonolysis reaction pathways for the degradation mechanism of the ethylene naphthalate dimer were investigated using the density functional theory (DFT) B3P86/6-31++G(d,p). To determine the thermodynamic and kinetic parameters, geometric structure optimization and frequency calculation were performed on a range of intermediates, transition states, and products associated with the reaction. The calculation results show that the highest energy barrier of the main element reaction step in hydrolysis is about 169.0 kJ/mol, the lowest is about 151.0 kJ/mol for ammonolysis, and the second is about 155.0 kJ/mol for alcoholysis. The main hydrolysis products of the ethylene naphthalate dimer are 2,6-naphthalenedicarboxylic acid and ethylene glycol; the main products of alcoholysis are dimethyl naphthalene-2,6-dicarboxylate and ethylene glycol, and the main products of ammonolysis are naphthalene-2,6-dicarboxamide and ethylene glycol. Furthermore, in the process of ethylene naphthalate dimer hydrolysis/alcoholysis/ammonolysis, the decomposition reaction in the NH3 atmosphere is better than that in methanol, and the reaction in CH3OH is better than that in the H2O molecular environment, and the increase in reaction temperature can increase its spontaneity. Our study presents the molecular mechanism of PEN hydrolysis/alcoholysis/ammonolysis and provides a reference for studying the degradation of other plastic wastes.


Asunto(s)
Teoría Funcional de la Densidad , Hidrólisis , Naftalenos/química , Cinética , Etilenos/química , Plásticos/química , Termodinámica , Modelos Químicos
6.
Nat Commun ; 15(1): 2189, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467605

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. To identify additional genetic factors, we analyzed exome sequences in a large cohort of Chinese ALS patients and found a homozygous variant (p.L700P) in PCDHA9 in three unrelated patients. We generated Pcdhα9 mutant mice harboring either orthologous point mutation or deletion mutation. These mice develop progressive spinal motor loss, muscle atrophy, and structural/functional abnormalities of the neuromuscular junction, leading to paralysis and early lethality. TDP-43 pathology is detected in the spinal motor neurons of aged mutant mice. Mechanistically, we demonstrate that Pcdha9 mutation causes aberrant activation of FAK and PYK2 in aging spinal cord, and dramatically reduced NKA-α1 expression in motor neurons. Our single nucleus multi-omics analysis reveals disturbed signaling involved in cell adhesion, ion transport, synapse organization, and neuronal survival in aged mutant mice. Together, our results present PCDHA9 as a potential ALS gene and provide insights into its pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ratones Transgénicos , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo
7.
Food Res Int ; 175: 113747, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128997

RESUMEN

Multi-functional packaging materials are an important development for food preservation. Emulsion electrospinning is a novel and simple method that can be used to prepare multi-functional packaging materials, which can effectively protect the loaded active substances during the preparation process. In this study, PCL/lecithin/bacteriocin CAMT6 nanofiber films with antimicrobial and antioxidant activity were prepared by emulsion electrostatic spinning. The morphology and homogeneity of the prepared nanofibrous membranes could be improved by optimising the formulation of the emulsion for electrospinning. Analytical testing of the prepared nanofiber films revealed that the nanofibers had a core-shell structure, with bacteriocin CAMT6 effectively encapsulated in the core layer and the PCL and phospholipids homogeneously mixed to form the shell layer. Additionally, the nanofiber films had acceptable tensile properties and water absorption capacity. In chilled salmon meat, the nanofiber film effectively inhibited the growth of bacteria, slowed the oxidation of oil and slowed water loss, which was a good protective effect. This study provides a reference for the encapsulation application of food-active packaging materials and bacteriocins.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Nanofibras , Animales , Bacteriocinas/farmacología , Antioxidantes/farmacología , Nanofibras/química , Lecitinas , Emulsiones , Salmón , Agua
8.
Environ Sci Technol ; 57(48): 20349-20359, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37942774

RESUMEN

Both ozone (O3) and UV/O3 treatment processes can effectively remove organic matter in the flocculated membrane filtration concentrate from landfill leachate, but the ozonation byproducts (OBPs) generated in the processes remain unknown. Using electrospray ionization-coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), this study investigated the molecular characteristics of unknown OBPs and their formation mechanisms during the treatment of flocculated nanofiltration concentrate (FNFC) using the O3 and UV/O3 processes. The results showed that after being treated by the O3 and UV/O3 processes, the average value of the oxygen-to-carbon ratio (O/Cavg) in the FNFC organic matter increased substantially from 0.49 to 0.61-0.64 and 0.63-0.71, respectively, with an O3 dosage of 13.4-54.4 mg/min. The main OBPs were CHO and CHON compounds, which were mainly produced through oxygenation (+O2/+O3 and -H2+O2), oxidative deamination (-NH3+O2), decyclopropyl (-C3H4), and deisopropyl (-C3H6) reactions. The hydroxyl radical (•OH) can intensify these reactions, resulting in an abundance of OBPs with a high oxidation degree and low molecular weight. OBPs at five m/z values were fragmented and analyzed with tandem mass spectrometry, and abundant hydroxyl groups, carboxyl groups, and carbonyl groups were tentatively identified, presenting a potential toxicity to aquatic organisms. Due to the high molecular diversity of the OBPs in FNFC, their lower ΔGCoxo compared to natural fulvic acid, and potential toxicity, their impact on the water environment should be given more attention.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Ozono/análisis , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Espectrometría de Masas en Tándem , Radical Hidroxilo , Purificación del Agua/métodos
9.
Sci Total Environ ; 905: 167147, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730067

RESUMEN

Shale gas extraction process generates a large amount of shale gas flowback wastewater (SGFW) containing refractory organic compounds, which can pose serious environmental threats if not properly treated. However, the extremely complex compositions of organics in SGFW are still unknown and their transformation pathways in O3- and •OH-dominated systems are not well recognized, which restrain the selection of treatment technology and optimization of operational parameters. The removal characteristics and reaction mechanism of dissolved organic matter (DOM) in SGFW treated by ozonation and Fenton processes were comparatively investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The results showed that both processes could degrade low-oxygen highly unsaturated and phenolic organics, polyphenolics and polycyclic aromatics, and transform them into aliphatic organics and high-oxygen highly unsaturated and phenolic organics. With increasing action of reactive oxygen species (O3 for ozonation and •OH for Fenton process), the degradation products (mainly aliphatic organics) increased during ozonation. However, in Fenton process, a wider range of DOM was removed without aliphatic organics accumulation. The degradation mechanisms of DOM during ozonation and Fenton processes included oxygen addition reactions (+3O, +H2O2, and +2O) as dominant pathways. However, ozonation showed more violent oxygenation, hydroxylation, and carboxylation, while Fenton process presented more violent chain-breaking reactions. These results revealed the selective oxidation of ozone and nonselective oxidation of •OH during SGFW treatment, and provided theoretical support for selecting SGFW treatment approaches.

10.
J Hazard Mater ; 443(Pt A): 130086, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36272369

RESUMEN

Refractory organic matter in membrane bioreactor effluent resulting from landfill leachate treatment has a complex composition. This paper identified the transformation mechanism of organic matter in a flocculation-ultraviolet (UV)/peroxymonosulfate (PMS) system at the molecular level using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. The results showed that the flocculation system was able to remove a large amount of dissolved organic matter (DOM) with high oxidation and unsaturation/saturation. UV radiation displayed a relatively strong reactivity for DOM with an electron-rich structure, which it can transform into DOM with lower aromaticity through photolysis and photosensitivity, although the effectiveness of the transformation was poor. In comparison, due to the action of reactive oxygen species, the UV/PMS system can enable reactions such as demethylation, dehydrogenation, decarboxylation, dehydroxylation, ring cleavage, and decarbonylation. It can remove approximately 60% quantity of the total DOM and produce DOM featuring a higher degree of oxidation and saturation than that of the UV system alone. The results showed that the UV/PMS system was a complementary of flocculation in DOM removal from the membrane bioreactor effluent, while the system also resulted in a large number of sulfuric compounds; thus, requiring further evaluation of its ecological effects.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Floculación , Peróxidos , Fotólisis
11.
Food Chem ; 403: 134293, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182858

RESUMEN

Nanoliposomes are ideal nanocarriers for encapsulated active compounds used in the food industry as they provide stability and controlled release. However, cholesterol may pose risks in large intake, which is the commonly-used nanoliposome stabilizers. In this study, resveratrol was used instead of cholesterol as a novel nanoliposome stabilizer to construct a resveratrol blank liposome (RBL) system. The RBL system was used to protect the bacteriocin CAMT6 to create bacteriocin-loaded nanoliposomes (BLLs). The RBLs and BLLs had favourable particle sizes (172.71 nm and 150.47 nm), polydispersity index (PDI) values (0.150 and 0.120) and zeta potentials (-41.54 mV and -43.53 mV, respectively). According to Differential scanning colourimetry (DSC) and X-ray diffraction (XRD) analyses, resveratrol altered the structure of the phospholipid layer. The phospholipid layers of the RBLs and BLLs had higher mobility when resveratrol was used as a stabilizer instead of cholesterol. Structurally, resveratrol was inserted egg yolk lecithin to constitute an RBL. CAMT6 was loaded in BLLs with spherical and shell-core structures. The BLL encapsulation efficiency was 97.32 % and exhibited three release phases, with the release rates reaching 62 %. In experiments with milk, the BLLs effectively protected the anti-Listeria activity of CAMT6. In summary, resveratrol is a suitable nanoliposome stabilizer and the proposed RBL system is an excellent way to improve the stability of water-soluble preservatives, such as bacteriocins, in complex food environments.


Asunto(s)
Bacteriocinas , Resveratrol , Liposomas/química , Tamaño de la Partícula , Excipientes , Lecitinas , Colesterol
12.
Chemosphere ; 308(Pt 3): 136432, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36115471

RESUMEN

A semiaerobic aged refuse biofilter (SAARB) can effectively treat mature landfill leachate (ML), but prolonged operation can lead to the enrichment of pollutants in the biofilter, resulting in severely degraded treatment performance. In this study, we constructed a combination process of ozonation and a SAARB to treat ML based on the principles of selective oxidation of aromatic organics by ozone and the preference of microorganisms for ozonation products. The results showed that the removal of organic and nitrogen pollutants became extremely poor after long-term treatment of ML using the SAARB alone. The decrease of chemical oxygen demand (COD), light absorbance at 254 nm (UV254), NH4+, and total nitrogen (TN) improved significantly after recirculating the ozonated ML effluent (OLE) into the SAARB, and the removal extents increased significantly to 63.59% (COD), 26.14% (UV254), 92.85% (NH4+), and 52.04% (TN), respectively. In addition, the recirculation of OLE enhanced the complete denitrification and tolerance to high NH4+ loading by the SAARB. An analysis of the community composition of 16S_bacteria and ammonia oxidation bacteria (AOB) showed that long-term treatment of ML using the SAARB alone had difficulty enriching the dominant functional bacteria. In the OLE recirculation stage, environmental factors-such as influent organic matter species and concentration, nitrogen pollutant concentration, and pH-were changed to influence the community composition of 16S_bacteria and AOB and enrich functional bacteria (e.g., Truepera, Luteibacter, and Nitrosospira). Therefore, ozonation combined with a SAARB can remove organic and nitrogen pollutants more effectively. In particular, this can be used to solve the problem of inefficient total nitrogen removal using the SAARB alone. This study provides a theoretical reference for the efficient and stable operation of biological processes when treating ML.


Asunto(s)
Contaminantes Ambientales , Ozono , Eliminación de Residuos , Contaminantes Químicos del Agua , Amoníaco/análisis , Reactores Biológicos/microbiología , Contaminantes Ambientales/análisis , Nitrógeno/análisis , Ozono/análisis , Contaminantes Químicos del Agua/análisis
13.
Chemosphere ; 308(Pt 1): 136145, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36029858

RESUMEN

Oil-based drilling cuttings (OBDC) are hazardous wastes produced during the extensive use of oil-based drilling mud in oil and gas exploration and development. They have strong mutagenic, carcinogenic, and teratogenic effects and need to be properly disposed of to avoid damaging the natural environment. This paper reviews the recent research progress on the regional distribution, properties, treatment technologies, and resource utilization of OBDC. The advantages and disadvantages of different technologies for removing petroleum pollutants from OBDC were comprehensively analyzed, and required future developments in treatment technologies were proposed.


Asunto(s)
Contaminantes Ambientales , Petróleo , Residuos Peligrosos , Aceites
14.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889304

RESUMEN

To explore the influence of different wax components and the shear effect exerted by the pump and pipe wall in the process of crude oil pipeline transportation on the microbehavior of wax aggregation in crude oil at low temperatures, molecular dynamics models of binary and multivariate systems of crude oil with different wax components are established in this paper. The simulation results are compared with the existing experimental results and the NIST database to verify the rationality and accuracy of the models. By using the established binary model to simulate four crude oil systems containing different wax components, it can be found that the longer the wax molecular chain, the more easily the wax molecules aggregate. The influence of temperature on the aggregation process of wax molecules with different chain lengths is also studied. The lower the temperature, the greater the difference in wax molecular aggregation degree caused by the difference in molecular chain length. Nonequilibrium molecular dynamics is used to simulate the shear process of a multivariate system of crude oil, and the micromechanisms of the shear effect on the aggregation process of wax molecules are studied. Shearing can destroy the stable structure of crude oil, resulting in the orientation and conformational transformation of wax molecules, and obtaining the region of wax molecules sensitive to temperature and shear effects, the temperatures of which are below the wax precipitation point and the shear rate of which is lower than the maximum shear rate to prevent the molecular structure from being destroyed. At the same time, the sensitivity of wax components with different chain lengths to the shear effect is studied. The research results provide theoretical guidance for ensuring the safe and economic operation of waxy crude oil production.

15.
Theranostics ; 12(8): 3818-3833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664061

RESUMEN

Background: Gastric cancer remains the third most common cause of cancer-related death worldwide. The development of novel therapeutic strategies for gastric cancer requires a deep understanding of the tumor cells and microenvironment of gastric cancer. Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine untreated non-metastatic gastric cancer patients. The transcriptomic atlas and ligand-receptor-based intercellular communication networks of the single cells were characterized. Results: Here, we profiled the transcriptomes of 47,304 cells from nine patients with gastric cancer. Tregs cells were significantly enriched in the gastric tumor tissues with increased expression of immune suppression related genes, which suggest a more immunosuppressive microenvironment. We also observed the absence of separate exhausted CD8+ T cell cluster, and the low expression level of exhaustion markers PDCD1, CTLA4, HAVCR2, LAG-3, and TIGIT in those specific cells. These may serve as molecular-level evidence for the limited benefit of immunotherapy among gastric cancer patients. In addition, we found ACKR1 specifically expressed in tumor endothelial cells, associated with poor prognosis in the cohort data and potentially provided a novel target of gastric cancer treatment. Furthermore, the tight interaction between endothelial cells and fibroblast implied the important roles of fibroblast in tumor angiogenesis and the maintenance of tumor vasculature. Conclusions: In conclusion, this single-cell atlas provide understanding the cellular heterogeneity from molecular level in gastric cancer and will serve as a valuable resource for developing innovative early and companion diagnostics, as well as discovering novel targeted therapies for gastric cancer.


Asunto(s)
Neoplasias Gástricas , Microambiente Tumoral , Comunicación Celular , Células Endoteliales/patología , Humanos , Análisis de la Célula Individual , Neoplasias Gástricas/patología , Transcriptoma , Microambiente Tumoral/genética
16.
J Hazard Mater ; 435: 128973, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35650737

RESUMEN

During leachate treatment, molecular information regarding the completely removed, partially removed, less-reactive, increased, and produced parts of dissolved organic matter (DOM) remains unknown. This study applied ESI FT-ICR MS to investigate the transformation characteristics of leachate nanofiltration concentrate (NFC) DOM during a combined flocculation-O3/H2O2 process. The NFC contained 5069 compounds in four main classes (CHO, CHON, CHOS, and CHONS compounds). The DOM number decreased to 4489 during flocculation and to 2903 after the O3/H2O2 process. During flocculation, the completely and partially removed DOM was mainly low-oxygen unsaturated and phenolic compounds. Saturated DOM was produced and remained in the flocculated effluent. During the O3/H2O2 process, the completely and partially removed DOM were mainly low-oxygen unsaturated and phenolic compounds that were mainly in a reduced state. Flocculation can remove many (condensed) aromatic compounds, and methylation and hydrogenation reactions occurred during flocculation. In the O3/H2O2 process, dearomatization, demethylation, carboxylation, and carbonylation reactions further achieved the degradation of DOM that was resistant to flocculation. Overall, the combined flocculation-O3/H2O2 process collectively eliminated a broader range of DOM than the single processes could achieve. The results of this study provide an in-depth understanding of DOM transformation in an NFC treatment.


Asunto(s)
Contaminantes Químicos del Agua , Floculación , Peróxido de Hidrógeno , Oxígeno
17.
Appl Opt ; 61(31): 9247-9255, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607060

RESUMEN

The brains of some insects can encode and decode polarization information and obtain heading angle information. Referring to the encoding ability of insects, exponential function encoding is designed to improve the stability of the polarized light compass artificial neural network. However, in the decoding process, only neurons with the largest activation degree are used for decoding (maximum value decoding), so the heading information contained in other neurons is not used. Therefore, average value decoding (AVD) and weighted AVD are proposed to use the heading information contained in multiple neurons to determine the heading. In addition, concerning the phenomenon of threshold activation of insect neurons, threshold value decoding (TVD) and weighted TVD are proposed, which can effectively eliminate the interference of neurons with low activation. Moreover, this paper proposes to improve the heading determination accuracy of the artificial neural network through pre-training. The simulation and experimental results show that the new, to the best of our knowledge, decoding methods and pre-training can effectively improve the heading determination accuracy of the artificial neural network.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Encéfalo/fisiología , Simulación por Computador
18.
Chemosphere ; 287(Pt 2): 132155, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34517241

RESUMEN

Because informal landfills are not constructed in a regulated manner, they will inevitably become a source of leachate pollution to the surrounding environment over time. Microbes are an important part of the soil system, playing a vital role in maintaining the normal functionality of soil. This study investigated the microbial composition and co-occurrence pattern in the leachate contaminated soil of an informal landfill site. The landfill leachate underwent horizontal and vertical migration through the contaminated soil, resulting in significant differences in the microbial compositions of horizontal surface soil (CS) and vertical subsurface soil (DS and ES) compared to uncontaminated soil (S). The microbial diversity of CS, DS, and ES was lower than that of S. Due to the migration of landfill leachate, the microbial composition of the surface soil was substantially changed. The dominant phyla in S included Proteobacteria (26.88%), Chloroflexi (23.68%), Actinobacteroita (17.36%), and Acidobacteroita (16.86%), but in contaminated soils, Firmicutes (35.27-86.68%) were the dominant bacteria. A network analysis indicated that Bacilli, Clostridia, and Thermacetogeniazai of the Firmicutes were the keystone taxa and played a vital role in maintaining the stability of the soil ecosystem. A functional annotation of prokaryotic taxa (FAPROTAX) analysis showed that the microbes involved in the C-, N-, and S-cycles in contaminated soil were significantly different to those in uncontaminated soil. The proportion of (aerobic)-chemoheterotrophy and cellulolysis functional communities in contaminated soils was significantly reduced, while there was an increase in functional communities, such as anammox and denitrification, which are not conducive to soil nitrogen fixation. This negatively affected the maintenance of normal soil ecological functions. This study identified the microbial characteristics in leachate contaminated soil and the results will be beneficial for the remediation of contaminated soil in informal landfill sites.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Contaminación Ambiental , Suelo , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
19.
Chemosphere ; 287(Pt 1): 132051, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34523455

RESUMEN

Flocculation is an economical and effective pretreatment technology for landfill leachate. An iron salt flocculant is often used in landfill leachate pretreatment, but the flocs that are formed are affected by the operation sequence, which subsquently influences flocculation. This study selected three representative landfill leachates (i.e., mature landfill leachate (MLL), biologically treated landfill leachate (BTL), and nanofiltration concentrate leachate (NFCL)). The effect of different operation modes on the removal of organic matter from landfill leachate by flocculation was studied, and a strategy to control colloidal instability is put forward. The results revealed that adjusting the pH value to 9 using NaOH changes the zeta potential of leachate when the leachate and sludge are not separated, which affects electric neutralization in flocculation and colloidal stability. Furthermore, a part of the collected organic matter is released to the leachate again, leading to a decrease in the flocculation pretreatment effect. In this improved flocculation process, the leachate and sludge are first separated, and the pH value of the system is then adjusted to 9. The effect of OH- on electric neutralization is avoided and the remaining Fe3+ can further remove organic matter from leachates. Finally, the UV254 removal efficiencies of MLL, BTL, and NFCL increased by 20.38%, 28.67%, and 22.67%, respectively. In a full-scale application, i.e., an NFCL treatment facility, the UV254 removal efficiency during long-term operation reached 87.50%. Therefore, the colloid instability control strategy this study proposes can provide theoretical and engineering references for the flocculation pretreatment of landfill leachate.


Asunto(s)
Contaminantes Químicos del Agua , Bioensayo , Floculación , Contaminantes Químicos del Agua/análisis
20.
Chemosphere ; 287(Pt 2): 132215, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826915

RESUMEN

Landfill leachate is a highly contaminated and complex organic wastewater. It can be categorized into young (YL) and mature leachate (ML) based on the landfill age, with significant differences in the composition of organic matter, resulting from the significant differences in humification degree. To compare the organic composition of YL and ML, ESI FT-ICR MS was applied to systematically investigate their molecular composition, chemical properties, and structural characteristics. The molecular weight of YL organics was lower than that of ML organics. In addition, O/C and H/C distributions of YL and ML organics were significantly different. YL mainly consisted of CHO compounds and aliphatic compounds. ML mainly consisted of CHON compounds and high oxygen highly unsaturated and phenolic compounds. The unsaturation degree of YL organics was expressed by carbon double bond equivalents ((DBE-C)/C = -0.0336) and was not significantly different from that of ML (-0.0241), but nominal oxidation state of carbon (NOSC = -0.8010) and aromaticity (AImod = 0.1254) of YL were significantly lower than of ML (NOSC = -0.0692; AImod = 0.2464). In addition, YL and ML organics were rich in functional groups, but the YL organics contained more straight-chain structures. The ML organics contained fewer straight-chain structures, a larger number of benzene-ring structures, and more oxygen-containing functional groups. The more complex structural properties of ML organics may be the result of the transformation of YL organics after a long series of reactions, including electrocyclization, decarboxylation, and hydrogen abstraction reactions, which eventually increased the humification degree of leachate organic matter.


Asunto(s)
Contaminantes Químicos del Agua , Carbono , Oxidación-Reducción , Oxígeno , Aguas Residuales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA