Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.619
Filtrar
1.
Curr Med Sci ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096477

RESUMEN

The increasing incidence of cardiovascular disease (CVD) is a significant global health concern, affecting millions of individuals each year. Accurate diagnosis of acute CVD poses a formidable challenge, as misdiagnosis can significantly decrease patient survival rates. Traditional biomarkers have played a vital role in the diagnosis and prognosis of CVDs, but they can be influenced by various factors, such as age, sex, and renal function. Soluble ST2 (sST2) is a novel biomarker that is closely associated with different CVDs. Its low reference change value makes it suitable for continuous measurement, unaffected by age, kidney function, and other confounding factors, facilitating risk stratification of CVDs. Furthermore, the combination of sST2 with other biomarkers can enhance diagnostic accuracy and prognostic value. This review aims to provide a comprehensive overview of sST2, focusing on its diagnostic and prognostic value as a myocardial marker for different types of CVDs and discussing the current limitations of sST2.

2.
Cancer ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092590

RESUMEN

Antibody-drug conjugates (ADCs) have demonstrated effectiveness in treating various cancers, particularly exhibiting specificity in targeting human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Recent advancements in phase 3 clinical trials have broadened current understanding of ADCs, especially trastuzumab deruxtecan, in treating other HER2-expressing malignancies. This expansion of knowledge has led to the US Food and Drug Administration's approval of trastuzumab deruxtecan for HER2-positive and HER2-low breast cancer, HER2-positive gastric cancer, and HER2-mutant nonsmall cell lung cancer. Concurrent with the increasing use of ADCs in oncology, there is growing concern among health care professionals regarding the rise in the incidence of interstitial lung disease or pneumonitis (ILD/p), which is associated with anti-HER2 ADC therapy. Studies on anti-HER2 ADCs have reported varying ILD/p mortality rates. Consequently, it is crucial to establish guidelines for the diagnosis and management of ILD/p in patients receiving anti-HER2 ADC therapy. To this end, a panel of Chinese experts was convened to formulate a strategic approach for the identification and management of ILD/p in patients treated with anti-HER2 ADC therapy. This report presents the expert panel's opinions and recommendations, which are intended to guide the management of ILD/p induced by anti-HER2 ADC therapy in clinical practice.

3.
Chem Biol Interact ; 400: 111179, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089415

RESUMEN

Oxidative stress contributes greatly to doxorubicin (DOX)-induced cardiotoxicity. Down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a key factor in DOX-induced myocardial oxidative injury. Recently, we found that mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1)-dependent k48-linked ubiquitination was responsible for down-regulation of myocardial Nrf2 in DOX-treated mice. Micafungin, an antifungal drug, was identified as a potential MALT1 inhibitor. This study aims to explore whether micafungin can reduce DOX-induced myocardial oxidative injury and if its anti-oxidative effect involves a suppression of MALT1-dependent k48-linked ubiquitination of Nrf2. To establish the cardiotoxicity models in vivo and in vitro, mice were treated with a single dose of DOX (15 mg/kg, i.p.) and cardiomyocytes were incubated with DOX (1 µM) for 24 h, respectively. Using mouse model of DOX-induced cardiotoxicity, micafungin (10 or 20 mg/kg) was shown to improve cardiac function, concomitant with suppression of oxidative stress, mitochondrial dysfunction, and cell death in a dose-dependent manner. Similar protective roles of micafungin (1 or 5 µM) were observed in DOX-treated cardiomyocytes. Mechanistically, micafungin weakened the interaction between MALT1 and Nrf2, decreased the k48-linked ubiquitination of Nrf2 while elevated the protein levels of Nrf2 in both DOX-treated mice and cardiomyocytes. Furthermore, MALT1 overexpression counteracted the cardioprotective effects of micafungin. In conclusion, micafungin reduces DOX-induced myocardial oxidative injury via suppression of MALT1, which decreases the k48-linked ubiquitination of Nrf2 and elevates Nrf2 protein levels. Thus, micafungin may be repurposed for treating DOX-induced cardiotoxicity.

4.
Inorg Chem ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102647

RESUMEN

Water vapor inevitably exists in the environment, which causes adverse impacts on many crucial chemical reactions. However, high water vapor of up to 10 vol %─relevant to a broad spectrum of industrial practices-for catalytic implications has been less investigated or neglected. As such, we explored an industry-relevant, humidity-highly sensitive benzene oxidation only in the presence of 10 vol % water vapor using the well-established Pt/Co3O4 catalysts, to bring such an important yet ignored topic to the forefront. Results revealed that Pt/Co3O4 catalysts possessing higher contents of Pt nanoparticles exhibited marked tolerance to water vapor interference. Under an incomplete benzene conversion condition, the input of 10 vol % water vapor indeed impaired the catalytic performance of Pt/Co3O4 catalyst significantly, which, in fact, was caused by the unfavorable formation of carboxylate species covering the catalyst's surface engendering irrecoverable activity loss, instead of the well-accepted water competitive adsorption. While such activity loss can be restored by elevating the reaction to a higher temperature. This study helps us to understand the compromised catalytic activity caused by high humidity, urging the systematic evaluation of well-established catalyst systems in high water vapor-contained conditions and pressing the development of water-tolerant catalysts for real-life application consideration.

5.
Curr Eye Res ; : 1-13, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103986

RESUMEN

PURPOSE: Melatonin has promising protective effects for retinopathy. However, its roles in retinopathy of prematurity (ROP) and the underlying mechanisms remain unknown. We aimed to explore its roles and mechanisms in a ROP model. METHODS: Hematoxylin and eosin staining were used to observe the morphology of the retina. Immunofluorescence was used to detect positive (Nrf2+ and VEGF+) cells. Immunohistochemistry was used to detect the level of nuclear expression of PCNA in retinal tissue. Transmission electron microscope (TEM) was used to observe the morphology and structure of pigment cells. qRT-PCR was used to assay the expression of miR-23a-3p, Nrf2, and HO-1. Western blotting was used to detect the expression of Nrf2, HO-1, ß-actin, and Lamin B1. RESULTS: Melatonin or miR-23a-3p antagomir treatment could ameliorate the Oxygen-induced pathological changes, increased the expression of Nrf2 and HO-1, SOD, and GSH-Px, and decreased the expression of VEGF, miR-23a-3p, MDA and the apoptosis in the ROP model. Further target prediction and luciferase reporter assays confirmed the targeted binding relationship between miR-23a-3p and Nrf2. CONCLUSION: Our study showed that melatonin could ameliorate H2O2-induced apoptosis and oxidative stress injury in RGC cells by mediating miR-23a-3p/Nrf2 signaling pathway, thereby improving retinal degeneration.

6.
Nat Commun ; 15(1): 6513, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095429

RESUMEN

Constructing a ocean Internet of Things requires an essential ocean environment monitoring system. However, the widely distributed existing ocean monitoring sensors make it impractical to provide power and transmit monitored information through cables. Therefore, ocean environment monitoring systems particularly need a continuous power supply and wireless transmission capability for monitoring information. Consequently, a high-strength, environmentally multi-compatible, floatable metamaterial energy harvesting device has been designed through integrated dynamic matching optimization of materials, structures, and signal transmission. The self-powered monitoring system breaks through the limitations of cables and batteries in the ultra-low-frequency wave environment (1 to 2 Hz), enabling real-time monitoring of various ocean parameters and wirelessly transmitting the data to the cloud for post-processing. Compared with solar and wind energy in the ocean environment, the energy harvesting device based on the defective state characteristics of metamaterials achieves a high-energy density (99 W/m3). For the first time, a stable power supply for the monitoring system has been realized in various weather conditions (24 h).

7.
World J Gastroenterol ; 30(23): 2991-3004, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946868

RESUMEN

BACKGROUND: Colorectal cancer significantly impacts global health, with unplanned reoperations post-surgery being key determinants of patient outcomes. Existing predictive models for these reoperations lack precision in integrating complex clinical data. AIM: To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients. METHODS: Data of patients treated for colorectal cancer (n = 2044) at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected. Patients were divided into an experimental group (n = 60) and a control group (n = 1984) according to unplanned reoperation occurrence. Patients were also divided into a training group and a validation group (7:3 ratio). We used three different machine learning methods to screen characteristic variables. A nomogram was created based on multifactor logistic regression, and the model performance was assessed using receiver operating characteristic curve, calibration curve, Hosmer-Lemeshow test, and decision curve analysis. The risk scores of the two groups were calculated and compared to validate the model. RESULTS: More patients in the experimental group were ≥ 60 years old, male, and had a history of hypertension, laparotomy, and hypoproteinemia, compared to the control group. Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation (P < 0.05): Prognostic Nutritional Index value, history of laparotomy, hypertension, or stroke, hypoproteinemia, age, tumor-node-metastasis staging, surgical time, gender, and American Society of Anesthesiologists classification. Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility. CONCLUSION: This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer, which can improve treatment decisions and prognosis.


Asunto(s)
Neoplasias Colorrectales , Aprendizaje Automático , Complicaciones Posoperatorias , Reoperación , Humanos , Masculino , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/patología , Femenino , Persona de Mediana Edad , Reoperación/estadística & datos numéricos , Estudios Retrospectivos , Factores de Riesgo , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Anciano , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Nomogramas , Curva ROC , China/epidemiología , Adulto
9.
PhytoKeys ; 243: 199-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961997

RESUMEN

Cyrtomiumadenotrichum Y. Nong & R.H. Jiang (Dryopteridaceae), a new species from Guangxi, China, is described and illustrated. This new species is similar to C.nephrolepioides (Christ) Copel., C.obliquum Ching & K. H. Shing ex K. H. Shing, C.sinningense Ching & K. H. Shing ex K. H. Shing and C.calcis Liang Zhang, N.T.Lu & Li Bing Zhang in having erect rhizomes, dense, leathery lamina and rounded sori, but it can be easily distinguishable by its stipe sparsely glandular, base obvious oblique, basiscopic base truncate, acroscopic base auriculate or ovate.

10.
China CDC Wkly ; 6(26): 619-623, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38966310

RESUMEN

What is already known about this topic?: Since May 2022, a global outbreak of mpox has emerged in more than 100 non-endemic countries. As of December 2023, over 90,000 cases had been reported. The outbreak has predominantly affected men who have sex with men (MSM), with sexual contact identified as the principal mode of transmission. What is added by this report?: Since June 2023, China has faced an occurrence of mpox, predominantly affecting the MSM population. Approximately 90% of those affected reported engaging in homosexual behavior within 21 days prior to symptom onset, a trend that aligns with the global outbreak pattern. The prompt identification of cases, diligent tracing of close contacts, and the implementation of appropriate management strategies have successfully mitigated the spread of mpox virus in China. What are the implications for public health practice?: We propose that mpox is transmitted locally within China. Drawing from our experiences in controlling the virus spread, it is crucial to investigate and formulate effective surveillance and educational strategies. Importantly, we must encourage high-risk populations to promptly seek medical care upon the onset of symptoms.

11.
Cardiovasc Diabetol ; 23(1): 249, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992718

RESUMEN

BACKGROUND: Previous studies have shown that peptides encoded by noncoding RNAs (ncRNAs) can be used as peptide drugs to alleviate diseases. We found that microRNA-31 (miR-31) is involved in the regulation of hypertension and that the peptide miPEP31, which is encoded by the primary transcript of miR-31 (pri-miR-31), can inhibit miR-31 expression. However, the role and mechanism of miPEP31 in hypertension have not been elucidated. METHODS: miPEP31 expression was determined by western blot analysis. miPEP31-deficient mice (miPEP31-/-) were used, and synthetic miPEP31 was injected into Ang II-induced hypertensive mice. Blood pressure was monitored through the tail-cuff method. Histological staining was used to evaluate renal damage. Regulatory T (Treg) cells were assessed by flow cytometry. Differentially expressed genes were analysed through RNA sequencing. The transcription factors were predicted by JASPAR. Luciferase reporter and electrophoretic mobility shift assays (EMSAs) were used to determine the effect of pri-miR-31 on the promoter activity of miPEP31. Images were taken to track the entry of miPEP31 into the cell. RESULTS: miPEP31 is endogenously expressed in target organs and cells related to hypertension. miPEP31 deficiency exacerbated but exogenous miPEP31 administration mitigated the Ang II-induced systolic blood pressure (SBP) elevation, renal impairment and Treg cell decreases in the kidney. Moreover, miPEP31 deletion increased the expression of genes related to Ang II-induced renal fibrosis. miPEP31 inhibited the transcription of miR-31 and promoted Treg differentiation by occupying the Cebpα binding site. The minimal functional domain of miPEP31 was identified and shown to regulate miR-31. CONCLUSION: miPEP31 was identified as a potential therapeutic peptide for treating hypertension by promoting Treg cell differentiation in vivo. Mechanistically, we found that miPEP31 acted as a transcriptional repressor to specifically inhibit miR-31 transcription by competitively occupying the Cebpα binding site in the pri-miR-31 promoter. Our study highlights the significant therapeutic effect of miPEP31 on hypertension and provides novel insight into the role and mechanism of miPEPs.


Asunto(s)
Angiotensina II , Presión Sanguínea , Modelos Animales de Enfermedad , Hipertensión , Riñón , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs , Regiones Promotoras Genéticas , Linfocitos T Reguladores , Animales , MicroARNs/metabolismo , MicroARNs/genética , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/genética , Sitios de Unión , Presión Sanguínea/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/inmunología , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Regulación de la Expresión Génica , Transducción de Señal , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Antihipertensivos/farmacología , Humanos
12.
Artículo en Inglés | MEDLINE | ID: mdl-39038325

RESUMEN

Background: Hypertensive intracerebral hemorrhage (HICH) is one of serious complications of hypertension. Therefore, early identification of postoperative deterioration of patients and timely intervention measures are needed. Objective: To evaluate the application of Modified Early Warning Score (MEWS) in HICH patients after neurosurgery. Design: Retrospective study. Participants: 82 HICH patients admitted to the neurosurgery department of our hospital from July 2022 to January 2023 were enrolled as subjects. Interventions: The MEWS score and the early warning score of postoperative deterioration of HICH patients were evaluated every hour. The respiratory rate, heart rate, systolic blood pressure, and blood oxygen saturation were monitored by a bedside multi-parameter monitor. The consciousness was evaluated by the Glasgow Coma Scale (GCS) score. Primary Outcome Measures: The receiver operator characteristic (ROC) curve was drawn to compare the predictive effect of the early warning scale and the MEWS on the prognosis of postoperative deterioration in patients with HICH. Results: The area under the ROC curve of early warning score predicted the postoperative deterioration of patients to be 0.9660, the best cutoff value was 3.9 points, the sensitivity was 98.35%, the specificity was 86.67%, and the Yoden index was 0.784. The area under the ROC curve of the MEWS for postoperative deterioration of HICH patients was 0.869, the best cutoff value was 3.9, the sensitivity was 83.33%, the specificity was 71.67%, and the Yoden index was 0.517. However, unlike early warning scoring scale, MEWS score was only used to evaluate vital signs with high frequency of clinical monitoring, and the threshold range of heart rate, systolic blood pressure and consciousness score set was not fully applicable to patients after HICH. Conclusion: The early warning scoring scale for postoperative deterioration of HICH patients has good predictive efficacy and strong operability.

13.
Nat Commun ; 15(1): 6174, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039047

RESUMEN

The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.


Asunto(s)
Cobre , Peróxido de Hidrógeno , Peroxidasa , Tolerancia a Radiación , Cobre/química , Animales , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peroxidasa/metabolismo , Peroxidasa/química , Ratones , Línea Celular Tumoral , Catálisis/efectos de la radiación , Cinética
14.
Nat Commun ; 15(1): 6043, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025845

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.


Asunto(s)
Antígeno CD47 , Carcinoma Ductal Pancreático , Transición Epitelial-Mesenquimal , Trampas Extracelulares , Neoplasias Hepáticas , Macrófagos , Necroptosis , Neoplasias Pancreáticas , Proteínas Quinasas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/genética , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Línea Celular Tumoral , Antígeno CD47/metabolismo , Antígeno CD47/genética , Proteínas Quinasas/metabolismo , Trampas Extracelulares/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Masculino , Transducción de Señal , Femenino , Acrilamidas , Sulfonamidas
15.
Toxicol Appl Pharmacol ; 490: 117042, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067772

RESUMEN

Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver. As the global obesity rate rises, non-alcoholic fatty liver disease (NAFLD) has emerged as the most rapidly increasing cause of HCC. Consequently, the regulation of lipid metabolism has become a crucial target for the prevention and treatment of HCC. Liquidambaric acid (LDA), a pentacyclic triterpenoid compound derived from various plants, exhibits diverse biological activities. We found that LDA could inhibit HCC cell proliferation by arresting cell cycle and prompting apoptosis. Additionally, LDA can augment the therapeutic efficacy of Regorafenib in HCC in vitro and vivo. Our study utilized transcriptome analysis, luciferase reporter assays, and co-immunocoprecipitation experiments to elucidate the anti-HCC mechanism of LDA. We discovered that LDA disrupts the formation of the PPARα-RXRα heterodimer, leading to the down-regulation of the ACSL4 gene and subsequently impacting the fatty acid metabolism of HCC cells, ultimately inhibiting HCC proliferation. Our research contributes to the identification of novel therapeutic agents and targets for the treatment of HCC.

16.
Front Biosci (Landmark Ed) ; 29(7): 257, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39082352

RESUMEN

BACKGROUND: The importance of N6-methyladenosine (m6A) modification in tumorigenesis and progression have been highlighted. This study aimed to investigate the modification of insulin receptor substrate 1 (IRS1) by m6A and its role in oral squamous cell carcinoma (OSCC). METHODS: Bioinformatics was employed to predict differential genes related to epithelial-mesenchymal transition (EMT) in OSCC. Seventeen pairs of OSCC and paracancerous tissue samples were collected. The impact of IRS1 on OSCC cell growth and EMT was evaluated. The fluctuations in IRS1 enrichment and the involvement of p53/Line-1 were investigated. RESULTS: IRS1 was highly expressed in OSCC. IRS1 silencing decreased OSCC cell proliferation and increased apoptosis. IRS1 silencing hindered EMT by regulating related markers. IRS1 silencing upregulated p53 and downregulated Line-1 ORF1p. The p53 inhibition reversed the effects of IRS1 silencing and induced EMT in OSCC cells. Furthermore, the m6A modification of IRS1 was increased in OSCC cells. IRS1 were positively regulated by the m6A regulators methyltransferase-like 14 (METTL14) and YTH domain-containing protein 1 (YTHDC1). IRS1 bound to YTHDC1, and YTHDC1 knockdown inhibited the IRS1 nuclear export. The obesity-associated protein (FTO) negatively regulated IRS1, and FTO overexpression reversed the IRS1-induced OSCC tumor growth. CONCLUSIONS: m6A methylation-mediated IRS1 regulated EMT in OSCC through p53/Line-1. These findings provide potential therapeutic strategies for managing OSCC.


Asunto(s)
Adenosina , Carcinoma de Células Escamosas , Proliferación Celular , Transición Epitelial-Mesenquimal , Proteínas Sustrato del Receptor de Insulina , Neoplasias de la Boca , Transducción de Señal , Proteína p53 Supresora de Tumor , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Animales , Ratones , Ratones Desnudos
17.
Lancet Planet Health ; 8(7): e463-e475, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38969474

RESUMEN

BACKGROUND: Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS: In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS: 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION: The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING: The Key Research and Development Program of China.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Virus Nipah/fisiología , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/transmisión , Humanos , Animales , Quirópteros/virología , Asia Sudoriental/epidemiología , Filogenia , Zoonosis/epidemiología , Zoonosis/virología
18.
Acta Physiol (Oxf) ; : e14198, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958443

RESUMEN

AIM: Neural activity in the olfactory bulb (OB) can represent odor information during different brain and behavioral states. For example, the odor responses of mitral/tufted (M/T) cells in the OB change during learning of odor-discrimination tasks and, at the network level, beta power increases and the high gamma (HG) power decreases during odor presentation in such tasks. However, the neural mechanisms underlying these observations remain poorly understood. Here, we investigate whether serotonergic modulation from the dorsal raphe nucleus (DRN) to the OB is involved in shaping activity during the learning process in a go/no-go task in mice. METHODS: Fiber photometry was used to record the population activity of DRN serotonergic neurons during a go/no-go task. In vivo electrophysiology was used to record neural activity (single units and local field potentials) in the OB during the go/no-go task. Real-time place preference (RTPP) and intracranial light administration in a specific subarea (iClass) tests were used to assess the ability of mice to encoding reward information. RESULTS: Odor-evoked population activity in serotonergic neurons in the DRN was shaped during the learning process in a go/no-go task. In the OB, neural activity from oscillations to single cells showed complex, learning-associated changes and ability to encode information during an odor discrimination task. However, these properties were not observed after ablation of DRN serotonergic neurons. CONCLUSION: The activity of neural networks and single cells in the OB, and their ability to encode information about odor value, are shaped by serotonergic projections from the DRN.

19.
Int Immunopharmacol ; 139: 112701, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39024747

RESUMEN

Current evidence suggests that porcine circovirus type 2 (PCV2) infection induces immunosuppression in piglets. Sophora subprostrate polysaccharide (SSP) exhibits various pharmacological activities, including immunoregulatory, anti-inflammatory, antiviral, and antioxidant properties. However, the acts of lncRNAs in regulating the therapeutic effects of SSP on PCV2-infected RAW264.7 cells remains poorly understood. This study aimed to investigate the molecular mechanisms by which lncRNAs regulate PCV2-induced immunosuppression during SSP treatment. Our findings revealed that 1699 mRNAs, 373 lncRNAs, and 129 miRNAs were differentially expressed in PCV2-infected RAW264.7 cells. Additionally, 359 mRNAs, 271 lncRNAs, and 79 miRNAs exhibited differential expression in SSP-treated PCV2-infected RAW264.7 cells. GO and KEGG analyses indicated that the candidate genes were enriched in the TNF/NF-κB signaling pathway. Furthermore, based on GO and KEGG pathway analysis, a ceRNA network involving chemokine (C-X-C motif) ligand 2 (CXCL2), miR-217-x, and MSTRG.5823.1 was constructed. We demonstrated that lncRNA MSTRG.5823.1 localized to the cytoplasm. Moreover, we found that silencing or overexpressing lncRNA MSTRG.5823.1 significantly modulated PCV2-induced immunosuppression by regulating the activation of the TNF/NF-κB signaling pathway. Specifically, lncRNA MSTRG.5823.1 overexpression increased the expression of TNF/NF-κB signaling pathway-related genes and proteins in PCV2-infected RAW264.7 cells. Conversely, silencing lncRNA MSTRG.5823.1 decreased their expression. Rescue assays further revealed that the suppressive effects of miR-217-x overexpression on TNF/NF-κB signaling pathway-related genes and proteins could be reversed by MSTRG.5823.1 overexpression. These findings highlight the critical role of lncRNA MSTRG.5823.1 in PCV2 infection progression and suggest a new strategy for the prevention and treatment of PCV2 infection.

20.
Front Aging Neurosci ; 16: 1412434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974901

RESUMEN

Background and objective: Neuroinflammatory processes have been identified as playing a crucial role in the pathophysiology of various neurodegenerative diseases, including idiopathic normal-pressure hydrocephalus (iNPH). iNPH, defined as a common disease of cognitive impairment in older adults, poses major challenges for therapeutic interventions owing to the stringent methodological requirements of relevant studies, clinical heterogeneity, unclear etiology, and uncertain diagnostic criteria. This study aims to assess the relationship between circulating inflammatory biomarkers and iNPH risk using bidirectional two-sample Mendelian randomization (MR) combined with meta-analysis. Methods: In our bidirectional MR study, genetic data from a genome-wide association study (GWAS) involving 1,456 iNPH cases and 409,726 controls of European ancestry were employed. Single-nucleotide polymorphisms (SNPs) associated with exposures served as instrumental variables for estimating the causal relationships between iNPH and 132 types of circulating inflammatory biomarkers from corresponding GWAS data. Causal associations were primarily examined using the inverse variance-weighted method, supplemented by MR-Egger, weighted median, simple mode, and weighted mode analyses. In the results, heterogeneity was assessed using the Cochran Q test. Horizontal pleiotropy was evaluated through the MR-Egger intercept test and the MR pleiotropy residual sum and outliers test. Sensitivity analysis was conducted through leave-one-out analysis. Reverse MR analyses were performed to mitigate bias from reverse causality. Meta-analyses of identical inflammatory biomarkers from both data sources strengthened the findings. Results: Results indicated a genetically predicted association between Interleukin-16 (IL-16) [OR: 1.228, 95% CI: 1.049-1.439, p = 0.011], TNF-related apoptosis ligand (TRAIL) [OR: 1.111, 95% CI: 1.019-1.210, p = 0.017] and Urokinase-type plasminogen activator (uPA) [OR: 1.303, 95% CI: 1.025-1.658, p = 0.031] and the risk of iNPH. Additionally, changes in human Glial cell line-derived neurotrophic factor (hGDNF) [OR: 1.044, 95% CI: 1.006-1.084, p = 0.023], Matrix metalloproteinase-1 (MMP-1) [OR: 1.058, 95% CI: 1.020, 1.098, p = 0.003] and Interleukin-12p70 (IL-12p70) [OR: 0.897, 95% CI: 0.946-0.997, p = 0.037] levels were identified as possible consequences of iNPH. Conclusion: Our MR study of inflammatory biomarkers and iNPH, indicated that IL-16, TRAIL, and uPA contribute to iNPH pathogenesis. Furthermore, iNPH may influence the expression of hGDNF, MMP-1, and IL-12p70. Therefore, targeting specific inflammatory biomarkers could be promising strategy for future iNPH treatment and prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA