Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6182, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039038

RESUMEN

The nanoscale electrical double layer plays a crucial role in macroscopic ion adsorption and reaction kinetics. In this study, we achieve controllable ion migration by dynamically regulating asymmetric electrical double layer formation. This tailors the ionic-electronic coupling interface, leading to the development of triboiontronics. Controlling the charge-collecting layer coverage on dielectric substrates allows for charge collection and adjustment of the substrate-liquid contact electrification property. By dynamically managing the asymmetric electrical double layer formation between the dielectric substrate and liquids, we develop a direct-current triboiontronic nanogenerator. This nanogenerator produces a transferred charge density of 412.54 mC/m2, significantly exceeding that of current hydrovoltaic technology and conventional triboelectric nanogenerators. Additionally, incorporating redox reactions to the process enhances the peak power and transferred charge density to 38.64 W/m2 and 540.70 mC/m2, respectively.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251130

RESUMEN

The advancement of the Internet of Things (IoT) has increased the demand for large-scale intelligent sensing systems. The periodic replacement of power sources for ubiquitous sensing systems leads to significant resource waste and environmental pollution. Human staffing costs associated with replacement also increase the economic burden. The triboelectric nanogenerators (TENGs) provide both an energy harvesting scheme and the possibility of self-powered sensing. Based on contact electrification from different materials, TENGs provide a rich material selection to collect complex and diverse data. As the data collected by TENGs become increasingly numerous and complex, different approaches to machine learning (ML) and deep learning (DL) algorithms have been proposed to efficiently process output signals. In this paper, the latest advances in ML algorithms assisting solid-solid TENG and liquid-solid TENG sensors are reviewed based on the sample size and complexity of the data. The pros and cons of various algorithms are analyzed and application scenarios of various TENG sensing systems are presented. The prospects of synergizing hardware (TENG sensors) with software (ML algorithms) in a complex environment and their main challenges for future developments are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA