Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
J Am Chem Soc ; 146(19): 13093-13104, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690763

RESUMEN

The cluster-based body-centered-cubic superlattice (cBCC SL) represents one of the most complicated structures among reported nanocrystal assemblies, comprised of 72 truncated tetrahedral quantum dots per unit cell. Our previous report revealed that truncated tetrahedral quantum dots within cBCC SLs possessed highly controlled translational and orientational order owing to an unusual energetic landscape based on the balancing of entropic and enthalpic contributions during the assembly process. However, the cBCC SL's structural transformability and mechanical properties, uniquely originating from such complicated nanostructures, have yet to be investigated. Herein, we report that cBCC SLs can undergo dynamic transformation to face-centered-cubic SLs in response to post-assembly molecular exposure. We monitored the dynamic transformation process using in situ synchrotron-based small-angle X-ray scattering, revealing a dynamic transformation involving multiple steps underpinned by interactions between incoming molecules and TTQDs' surface ligands. Furthermore, our mechanistic study demonstrated that the precise configuration of TTQDs' ligand molecules in cBCC SLs was key to their high structural transformability and unique jelly-like soft mechanical properties. While ligand molecular configurations in nanocrystal SLs are often considered minor features, our findings emphasize their significance in controlling weak van der Waals interactions between nanocrystals within assembled SLs, leading to previously unremarked superstructural transformability and unique mechanical properties. Our findings promote a facile route toward further creation of soft materials, nanorobotics, and out-of-equilibrium assemblies based on nanocrystal building blocks.

2.
Adv Mater ; : e2313863, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687901

RESUMEN

In both chemical and electrochemical doping of organic semiconductors (OSCs), a counterion, either from the electrolyte or ionized dopant, balances the charge introduced to the OSC. Despite the large influence of this counterion on OSC optical and electronic response, there remains substantial debate on how a fundamental parameter, ion size, impacts these properties. This work resolves much of this debate by accounting for two doping regimes. In the low-doping regime, the Coulomb binding energies between charge carriers on the OSC and the counterions are significant, and larger counterions lead to decreased Coulomb interactions, more delocalized charge carriers, and higher electrical conductivities. In the high-doping regime, the Coulomb binding energies become negligible due to the increased dielectric constant of the films and a smoothing of the energy landscape; thereby, the electrical conductivities depend primarily on the extent of morphological disorder in the OSC. Moreover, in regioregular poly(3-hexylthiophene), rr-P3HT, smaller counterions lead to greater bipolaron concentrations in the low-doping regime due to the increased Coulomb interactions. Emphasizing the impact of the counterion size, it is shown that larger counterions can lead to increased thermoelectric power factors for rr-P3HT.

3.
Adv Sci (Weinh) ; : e2401405, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528662

RESUMEN

Volatile solid additives have attracted increasing attention in optimizing the morphology and improving the performance of currently dominated non-fullerene acceptor-based organic solar cells (OSCs). However, the underlying principles governing the rational design of volatile solid additives remain elusive. Herein, a series of efficient volatile solid additives are successfully developed by the crossbreeding effect of chalcogenation and iodination for optimizing the morphology and improving the photovoltaic performances of OSCs. Five benzene derivatives of 1,4-dimethoxybenzene (DOB), 1-iodo-4-methoxybenzene (OIB), 1-iodo-4-methylthiobenzene (SIB), 1,4-dimethylthiobenzene (DSB) and 1,4-diiodobenzene (DIB) are systematically studied, where the widely used DIB is used as the reference. The effect of chalcogenation and iodination on the overall property is comprehensively investigated, which indicates that the versatile functional groups provided various types of noncovalent interactions with the host materials for modulating the morphology. Among them, SIB with the combination of sulphuration and iodination enabled more appropriate interactions with the host blend, giving rise to a highly ordered molecular packing and more favorable morphology. As a result, the binary OSCs based on PM6:L8-BO and PBTz-F:L8-BO as well as the ternary OSCs based on PBTz-F:PM6:L8-BO achieved impressive high PCEs of 18.87%, 18.81% and 19.68%, respectively, which are among the highest values for OSCs.

4.
Angew Chem Int Ed Engl ; 63(21): e202402831, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38532290

RESUMEN

A double-fibril network of the photoactive layer morphology is recognized as an ideal structure facilitating exciton diffusion and charge carrier transport for high-performance organic solar cells (OSCs). However, in the layer-by-layer processed OSCs (LbL-OSCs), polymer donors and small molecule acceptors (SMAs) are separately deposited, and it is challenging to realize a fibril network of pure SMAs with the absence of tight interchain entanglement as polymers. In this work, crystalline small molecule donors (SMDs), named TDZ-3TR and SeDZ-3TR, were designed and introduced into the L8-BO acceptor solution, forcing the phase separation and molecular fibrilization. SeDZ-3TR showed higher crystallinity and lower miscibility with L8-BO acceptor than TDZ-3TR, enabling more driving force to favor the phase separation and better molecular fibrilization of L8-BO. On the other hand, two donor polymers of PM6 and D18 with different fibril widths and lengths were put together to optimize the fibril network of the donor layer. The simultaneously optimization of the acceptor and donor layers resulted in a more ideal double-fibril network of the photoactive layer and an impressive power conversion efficiency (PCE) of 19.38 % in LbL-OSCs.

5.
Phys Rev E ; 109(1-2): 015103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366476

RESUMEN

We develop a multitask and multifidelity Gaussian process (MMGP) model to accurately predict and optimize the multiobjective performance of a flapping foil while minimizing the cost of high-fidelity data. Through a comparison of three kernels, we have selected and applied the spectral mixture kernel and validated the robustness and effectiveness of a multiacquisition function. To effectively incorporate data with varying levels of fidelity, we have adopted a linear prior formula-based multifidelity framework. Additionally, Bayesian optimization with a multiacquisition function is adopted by the MMGP model to enable multitask active learning. The results unequivocally demonstrate that the MMGP model serves as a highly capable and efficient framework for effectively addressing the multiobjective challenges associated with flapping foils.

6.
Chem Commun (Camb) ; 60(10): 1285-1288, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38197129

RESUMEN

Herein, we reported an efficient indium catalyzed dithianyl-alkyne metathesis (DAM) reaction. This strategy allows for the formation of a new C-C double bond and valuable C-S bonds during the metathesis event, and was successfully applied to the synthesis of diverse vinyl dithianyl substituted organic molecules.

7.
J Am Chem Soc ; 146(6): 3785-3795, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295018

RESUMEN

The size-dependent and collective physical properties of nanocrystals (NCs) and their self-assembled superlattices (SLs) enable the study of mesoscale phenomena and the design of metamaterials for a broad range of applications. However, the limited mobility of NC building blocks in dried NCSLs often hampers the potential for employing postdeposition methods to produce high-quality NCSLs. In this study, we present tailored promesogenic ligands that exhibit a lubricating property akin to thermotropic liquid crystals. The lubricating ability of ligands is thermally triggerable, allowing the dry solid NC aggregates deposited on the substrates with poor ordering to be transformed into NCSLs with high crystallinity and preferred orientations. The interplay between the dynamic behavior of NCSLs and the molecular structure of the ligands is elucidated through a comprehensive analysis of their lubricating efficacy using both experimental and simulation approaches. Coarse-grained molecular dynamic modeling suggests that a shielding layer from mesogens prevents the interdigitation of ligand tails, facilitating the sliding between outer shells and consequently enhancing the mobility of NC building blocks. The dynamic organization of NCSLs can also be triggered with high spatial resolution by laser illumination. The principles, kinetics, and utility of lubricating ligands could be generalized to unlock stimuli-responsive metamaterials from NCSLs and contribute to the fabrication of NCSLs.

8.
Org Lett ; 26(3): 581-585, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38051762

RESUMEN

Herein, we report a C3 and C1 coupling approach between vinyl 1,3-dithiane derivatives and alkynylsilanes for the construction of highly substituted conjugated dienes. Through the regioselective dual 1,3-sulfur migration process, this method enabled the synthesis of a wide range of highly substituted (E)-1,3-dienes stereoselectively in moderate to high yields, which provided one alternative way to synthesize the corresponding conjugated dienones.

9.
Adv Mater ; 36(3): e2306990, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37766648

RESUMEN

The limited selection of wide bandgap polymer donors for all-polymer solar cells (all-PSCs) is a bottleneck problem restricting their further development and remains poorly studied. Herein, a new wide bandgap polymer, namely PBBTz-Cl, is designed and synthesized by bridging the benzobisthiazole acceptor block and chlorinated benzodithiophene donor block with thiophene units for application as an electron donor in all-PSCs. PBBTz-Cl not only possesses wide bandgap and deep energy levels but also displays strong absorption, high-planar structure, and good crystallinity, making it a promising candidate for application as a polymer donor in organic solar cells. When paired with the narrow bandgap polymer acceptor PY-IT, a fibril-like morphology forms, which facilitates exciton dissociation and charge transport, contributing to a power conversion efficiency (PCE) of 17.15% of the corresponding all-PSCs. Moreover, when introducing another crystalline polymer acceptor BTP-2T2F into the PBBTz-Cl:PY-IT host blend, the absorption ditch in the range of 600-750 nm is filled, and the blend morphology is further optimized with the trap density reducing. As a result, the ternary blend all-PSCs achieve a significantly improved PCE of 18.60%, which is among the highest values for all-PSCs to date.

10.
Nano Lett ; 24(1): 441-449, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38109494

RESUMEN

Conjugated polymer films are promising in wearable X-ray detection. However, achieving optimal film microstructure possessing good electrical and detection performance under large deformation via scalable printing remains challenging. Herein, we report bar-coated high-performance stretchable films based on a conjugated polymer P(TDPP-Se) and elastomer SEBS blend by optimizing the solution-processing conditions. The moderate preaggregation in solution and prolonged growth dynamics from a solvent mixture with limited dissolving capacity is critical to forming aligned P(TDPP-Se) chains/crystalline nanofibers in the SEBS phase with enhanced π-π stacking for charge transport and stress dissipation. The film shows a large elongation at break of >400% and high mobilities of 5.29 cm2 V-1 s-1 at 0% strain and 1.66 cm2 V-1 s-1 over 500 stretch-release cycles at 50% strain, enabling good X-ray imaging with a high sensitivity of 1501.52 µC Gyair-1 cm-2. Our work provides a morphology control strategy toward high-performance conjugated polymer film-based stretchable electronics.

11.
Adv Mater ; 36(11): e2308216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100817

RESUMEN

The success of Y6-type nonfullerene small molecule acceptors (NF-SMAs) in polymer solar cells (PSCs) can be attributed to their unique honeycomb stacking style, which leads to favorable thin-film morphologies. The intermolecular interactions related to the crystallization tendency of these NF-SMAs is closely governed by their electron accepting end groups. For example, the high performance Y6 derivative L8-BO (BTP-4F) presents three types of stacking modes in contrast to two stacking modes of Y6. Hence, it is ultimately interesting to obtain more insight on the packing properties and the preferences influenced by chemical modifications such as end group engineering. This work designs and synthesizes asymmetric and symmetric L8-BO derivatives with brominated end groups and explores the stacking preferences in various modes. The asymmetric BTP-3FBr displays an optimized crystallization tendency and thin film morphology, leading to a decent power conversion efficiency (PCE) of 18.34% in binary devices and a top PCE of 19.32% in ternary devices containing 15 wt% IDIC as the second acceptor.

12.
ACS Mater Au ; 3(3): 242-254, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38089129

RESUMEN

Organic electrochemical transistors (OECTs) are becoming increasingly ubiquitous in various applications at the interface with biological systems. However, their widespread use is hampered by the scarcity of electron-conducting (n-type) backbones and the poor performance and stability of the existing n-OECTs. Here, we introduce organic salts as a solution additive to improve the transduction capability, shelf life, and operational stability of n-OECTs. We demonstrate that the salt-cast devices present a 10-fold increase in transconductance and achieve at least one year-long stability, while the pristine devices degrade within four months of storage. The salt-added films show improved backbone planarity and greater charge delocalization, leading to higher electronic charge carrier mobility. These films show a distinctly porous morphology where the interconnectivity is affected by the salt type, responsible for OECT speed. The salt-based films display limited changes in morphology and show lower water uptake upon electrochemical doping, a possible reason for the improved device cycling stability. Our work provides a new and easy route to improve n-type OECT performance and stability, which can be adapted for other electrochemical devices with n-type films operating at the aqueous electrolyte interface.

14.
J Am Chem Soc ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917967

RESUMEN

Mixed-cation metal halide perovskites have shown remarkable progress in photovoltaic applications with high power conversion efficiencies. However, to achieve large-scale deployment of this technology, efficiencies must be complemented by long-term durability. The latter is limited by external factors, such as exposure to humidity and air, which lead to the rapid degradation of the perovskite materials and devices. In this work, we study the mechanisms causing Cs and formamidinium (FA)-based halide perovskite phase transformations and stabilization during moisture and air exposure. We use in situ X-ray scattering, X-ray photoelectron spectroscopy, and first-principles calculations to study these chemical interactions and their effects on structure. We unravel a surface reaction pathway involving the dissolution of FAI by water and iodide oxidation by oxygen, driving the Cs/FA ratio into thermodynamically unstable regions, leading to undesirable phase transformations. This work demonstrates the interplay of bulk phase transformations with surface chemical reactions, providing a detailed understanding of the degradation mechanism and strategies for designing durable and efficient perovskite materials.

15.
ACS Appl Mater Interfaces ; 15(50): 57941-57949, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37816032

RESUMEN

The tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to "dial-in" the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in the deformation mechanism providing enhanced performance are unknown. Here, in situ small-angle X-ray scattering (SAXS) measurements during uniaxial extension reveal distinct deformation mechanisms between a commercially available linear poly(styrene)-poly(butadiene)-poly(styrene) (SBS) triblock copolymer and the grafted SBS version containing grafted poly(styrene) (PS) chains from the poly(butadiene) (PBD) midblock. The neat SBS (φSBS = 100%) sample deforms congruently with the macroscopic dimensions, with the domain spacing between spheres increasing and decreasing along and transverse to the stretch direction, respectively. At high extensions, end segment pullout from the PS-rich domains is detected, which is indicated by a disordering of SBS. Conversely, the PS-grafted SBS that is 30 vol % SBS and 70% styrene (φSBS = 30%) exhibits a lamellar morphology, and in situ SAXS measurements reveal an unexpected deformation mechanism. During deformation, there are two simultaneous processes: significant lamellar domain rearrangement to preferentially orient the lamellae planes parallel to the stretch direction and crazing. The samples whiten at high strains as expected for crazing, which corresponds with the emergence of features in the 2D SAXS pattern during stretching consistent with fibril-like structures that bridge the voids in crazes. The significant domain rearrangement in the grafted copolymers is attributed to the new junctions formed across multiple PS domains by the grafting of a single chain. The in situ SAXS measurements provide insights into the enhanced mechanical properties of grafted copolymers that arise through improved physical cross-linking that leads to nanostructure domain reorientation for self-reinforcement and craze formation where fibrils help to strengthen the polymer.

16.
Proc Natl Acad Sci U S A ; 120(41): e2305327120, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788308

RESUMEN

Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers. This occurred when increasing CQD diameter to decrease the bandgap below 1.1 eV. Here, we develop a rectifying junction among InAs CQD layers, where we use molecular surface modifiers to tune the energy levels of InAs CQDs electrostatically. Previously developed bifunctional dithiol ligands, established for II-VI and IV-VI CQDs, exhibit slow reaction kinetics with III-V surfaces, causing the exchange to fail. We study carboxylate and thiolate binding groups, united with electron-donating free end groups, that shift upward the valence bandedge of InAs CQDs, producing valence band energies as shallow as 4.8 eV. Photophysical studies combined with density functional theory show that carboxylate-based passivants participate in strong bidentate bridging with both In and As on the CQD surface. The tuned CQD layer incorporated into a photodiode structure achieves improved performance with EQE (external quantum efficiency) of 35% (>1 µm) and dark current density < 400 nA cm-2, a >25% increase in EQE and >90% reduced dark current density compared to the reference device. This work represents an advance over previous III-V CQD short-wavelength IR photodetectors (EQE < 5%, dark current > 10,000 nA cm-2).

17.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2713-2722, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37897278

RESUMEN

Inner Mongolia grassland is rich in natural vegetation and mineral resources. Based on Landsat5/7/8 NDVI data, we used pixel binary model to invert vegetation coverage of Inner Mongolia grassland area, investigated the stability, spatial distribution, and future evolution trend of vegetation coverage by using Sen+MK and Hurst index, and analyzed the driving factors of the spatial differentiation of vegetation coverage by the optimal parameters-based geographical detector. The results showed that vegetation coverage of Inner Mongolia grassland showed an increasing trend from 2006 to 2020, and the overall spatial pattern was high in the east and low in the west, mainly with great fluctuation. The regions with slight or obvious improvement characteristics (64.8%) were much more than those with slight or severe degradation characteristics (23.2%). Compared with that in the past 15 years, the proportion of degraded vegetation in the future is expected to increase to 36.6%. The central part of Xilin Gol League and Wulanqab in the central grassland area, the western part of Hulunbuir and Erdos in the eastern grassland area, and Wuhai in the western grassland area were at the risk of degradation, which should be paid more attention. Precipitation was the dominant factor of spatial differentiation in Inner Mongolia grassland, while soil type, land use, and air temperature had the most significant synergistic effect.


Asunto(s)
Pradera , Suelo , Temperatura , China , Predicción , Ecosistema
19.
Nat Commun ; 14(1): 4608, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528112

RESUMEN

Non-fullerene based organic solar cells display a high initial power conversion efficiency but continue to suffer from poor thermal stability, especially in case of devices with thick active layers. Mixing of five structurally similar acceptors with similar electron affinities, and blending with a donor polymer is explored, yielding devices with a power conversion efficiency of up to 17.6%. The hexanary device performance is unaffected by thermal annealing of the bulk-heterojunction active layer for at least 23 days at 130 °C in the dark and an inert atmosphere. Moreover, hexanary blends offer a high degree of thermal stability for an active layer thickness of up to 390 nm, which is advantageous for high-throughput processing of organic solar cells. Here, a generic strategy based on multi-component acceptor mixtures is presented that permits to considerably improve the thermal stability of non-fullerene based devices and thus paves the way for large-area organic solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA