Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Chem Soc ; 146(19): 13025-13033, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38693826

RESUMEN

1,3,5-Trimethylenebenzene (1,3,5-TMB), a 3-fold-symmetric triradical with a high-spin ground state, is an attractive platform for investigating the unique spin properties of π-conjugated triangular triradicals. Here, we report the on-surface synthesis of N-heterocyclic carbene (NHC)-derived 1,3,5-TMB (N-TMB) via surface-assisted C-C and C-N coupling reactions on Au(111). The chemical and electronic structures of N-TMB on the Au(111) surface are revealed with atomic precision using scanning tunneling microscopy and noncontact atomic force microscopy, combined with density functional theory (DFT) calculations. It is demonstrated that there is substantial charge transfer between N-TMB and the substrate, resulting in a positively charged N-TMB on Au(111). DFT calculations at the UB3LYP/def2-TZVP level of theory and multireference method, e.g., CASSCF/NEVPT2, indicate that N-TMB possesses a doublet ground state with reduced Cs symmetry in the gas phase, contrasting the quartet ground state of 1,3,5-TMB with D3h symmetry, and exhibits a doublet-quartet energy gap of -0.80 eV. The incorporation of NHC structures and the extended π-conjugation promote the spin-orbital overlaps in N-TMB, leading to Jahn-Teller distortion and the formation of a robust doublet state. Our results not only demonstrate the fabrication of polyradicals based on NHC but also shed light on the effect of NHC and π-conjugation on the electronic structure and spin coupling, which opens up new possibilities for precisely regulating the spin-spin exchange coupling of organic polyradicals.

2.
J Am Chem Soc ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598684

RESUMEN

Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.

3.
Langmuir ; 39(36): 12521-12532, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37651313

RESUMEN

Two-dimensional polymers (2DPs) are molecularly thin networks consisting of monomers covalently linked in at least two directions in the molecular plane. Because of the unique structural features and emergent physicochemical properties, 2DPs promise application potentials in catalysis, chemical sensing, and organic electronic devices. On-surface synthesis is of great interest to fabricate 2DPs with atomic precision, and the properties of the 2DPs can be characterized in situ through scanning probe techniques. In this Perspective, we first introduce the recent developments of on-surface 2D polymerization, including the design principle, the synthetic reactions, and the factors affecting the synthesis of 2DPs on surface. Then, we summarize some major challenges in this field, including the fabrication of high-quality 2DPs and the study of the intrinsic electronic properties of 2DPs, and we discuss some of the available solutions to address these issues.

4.
Natl Sci Rev ; 10(7): nwad088, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37564921

RESUMEN

Reversible transformations between fractals and periodic structures are of fundamental importance for understanding the formation mechanism of fractals. Currently, it is still a challenge to controllably achieve such a transformation. We investigate the effect of CO and CO2 molecules on Sierpinski triangles (STs) assembled from Fe atoms and 4,4″-dicyano-1,1':3',1″-terphenyl (C3PC) molecules on Au surfaces. Using scanning tunneling microscopy, we discover that the gas molecules induce a transition from STs into 1D chains. Based on density functional theory modeling, we propose that the atomistic mechanism involves the transformation of a stable 3-fold coordination Fe(C3PC)3 motif to Fe(C3PC)4 with an axially bonded CO molecule. CO2 causes the structural transformation through a molecular catassembly process.

5.
Foods ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36981092

RESUMEN

Oat milk, as an emerging plant-based milk substitute, has become popular in recent years. However, the stability and flavor of oat milk products are hindering their quality. The examination of the processing capacities of potential oat cultivars could help to improve product quality. In the present study, the properties of oat milk produced from one Australian and three Chinese cultivars were compared. The stability of oat milk produced using our manufacturing process was superior to the commercial product and was highly influenced by cultivars. Positive correlations of the cultivar's protein and plant cell debris content with the final products' separation rate, and the cultivar's lipid content with the final products' creaming, were observed. Among the investigated cultivars, Chinese Bayou 01 (ZBY01) was the most suitable for oat milk processing. Oat milk produced with this cultivar has better stability and sensory acceptability. It can provide around 1% of protein, 9.84 mg/mL of ß-glucan, and 70.96 mg GAE/100 g DW of polyphenols. Our results support one Chinese cultivar for oat milk processing and provide possible criteria for raw material selection.

6.
ACS Nano ; 16(8): 13092-13100, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35913404

RESUMEN

Aromatic ring fusion to porphyrins and their derivatives represents an attractive route to tune the molecular conjugation and thus expand their functionalities. Here, we report the expansion of the aromatic π-system of palladium tetraphenyltetrabenzoporphyrins (Pd-TPTBP) via surface-assisted γ-ortho cyclodehydrogenation on Ag(111). The chemical transformation of Pd-TPTBP into different products at an elevated temperature of 600 K was revealed at the single-molecule level using bond-resolved scanning tunneling microscopy with a CO-functionalized tip. We captured a series of γ-ortho cyclodehydrogenation products, wherein the maximum extent to which the reaction can progress is associated with 7-fold C-C formation to afford nearly planar γ-ortho fused porphyrins with 66 conjugated π-electrons. In addition, a small number of molecules undergo C-C bond dissociation of meso-phenyl at elevated temperature, producing fully planar γ-ortho fused products lacking one or two phenyl moieties. Scanning tunneling spectroscopy measurements and DFT calculations suggest the electronic gap of the γ-ortho fused porphyrin decreases compared to that of the precursor. The HOMO and LUMO of the planar γ-ortho fused products are localized on the partially fused benzo moieties and the meso-position, respectively.

7.
Phys Rev Lett ; 128(23): 236401, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749188

RESUMEN

Investigation of intermolecular electron spin interaction is of fundamental importance in both science and technology. Here, radical pairs of all-trans retinoic acid molecules on Au(111) are created using an ultralow temperature scanning tunneling microscope. Antiferromagnetic coupling between two radicals is identified by magnetic-field-dependent spectroscopy. The measured exchange energies are from 0.1 to 1.0 meV. The biradical spin coupling is mediated through O─H⋯O hydrogen bonds, as elucidated from analysis combining density functional theory calculation and a modern version of valence bond theory.


Asunto(s)
Electrones , Enlace de Hidrógeno
8.
J Am Chem Soc ; 143(36): 14417-14421, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34387475

RESUMEN

Fractals are found in nature and play important roles in biological functions. However, it is challenging to controllably prepare biomolecule fractals. In this study, a series of Sierpinski triangles with global organizational chirality is successfully constructed by the coassembly of l-tryptophan and 1,3-bi(4-pyridyl)benzene molecules on Ag(111). The chirality is switched when replacing l-tryptophan by d-tryptophan. The fractal structures are characterized by low-temperature scanning tunneling microscopy at the single-molecule level. Density functional theory calculations reveal that intermolecular hydrogen bonds stabilize the Sierpinski triangles.


Asunto(s)
Derivados del Benceno/química , Fractales , Piridinas/química , Triptófano/química , Adsorción , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Modelos Químicos , Radioisótopos/química , Plata/química , Estereoisomerismo
9.
J Phys Chem Lett ; 12(15): 3733-3739, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33843217

RESUMEN

Realization of the Kagome antiferromagnetic (KAF) lattice is of high interest because the geometric frustration in the Kagome lattice is expected to give rise to highly degenerated ground states that may host exotic phases such as quantum spin liquid. Here we demonstrate the design and synthesis of a single-layer two-dimensional metal-organic framework (2D-MOF) containing a Kagome lattice of Fe(II) ions assembled on a Au(111) surface. First-principles calculations reveal that the Fe(II) ions are at a high spin state of S = 2 and are coupled antiferromagnetically with nearest-neighboring exchange J1 = 5.8 meV. The ground state comprises various degenerated spin configurations including the well-known q = 0 and q = √3 × âˆš3 phases. Remarkably, we observe a spin excitation at 6 meV using tunneling spectroscopy. This work points out a feasible route toward realizing spin 1/2 KAF, a candidate quantum spin liquid system, by replacing Fe(II) by Cu(II) in the same structure.

10.
Nat Commun ; 12(1): 1619, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712614

RESUMEN

The study of lanthanide (Ln)-transition-metal (TM) heterometallic clusters which play key roles in various high-tech applications is a rapid growing field of research. Despite the achievement of numerous Ln-TM cluster compounds comprising one Ln atom, the synthesis of Ln-TM clusters containing multiple Ln atoms remains challenging. Here, we present the preparation and self-assembly of a series of Au-bridged heterometallic clusters containing multiple cerium (Ce) atoms via on-surface coordination. By employing different pyridine and nitrile ligands, the ordered coordination assemblies of clusters containing 2, 3 and 4 Ce atoms bridged by Au adatoms are achieved on Au(111) and Au(100), as revealed by scanning tunneling microscopy. Density functional theory calculations uncover the indispensable role of the bridging Au adatoms in constructing the multi-Ce-containing clusters by connecting the Ce atoms via unsupported Ce-Au bonds. These findings demonstrate on-surface coordination as an efficient strategy for preparation and organization of the multi-Ln-containing heterometallic clusters.

11.
Nat Chem ; 12(5): 431-432, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32346134
12.
Chemphyschem ; 20(18): 2262-2270, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31291053

RESUMEN

Fractal structures are of fundamental importance in science, engineering, mathematics, and aesthetics. Construction of molecular fractals on surfaces can help to understand the formation mechanism of fractals and a series of achievements have been acquired in the preparation of molecular fractals. This review focuses on Sierpinski triangles (STs), representatives of various prototypical fractals, on surfaces. They are investigated by Monte Carlo simulations and ultra-high vacuum scanning tunneling microscopy. STs are bonded through halogen bonds, hydrogen bonds, metal-organic coordination bonds and covalent bonds. The coexistence of and competition between fractals and crystals are realized for a hydrogen-bonded system. Electronic properties of two types of STs are summarized.

13.
ACS Nano ; 13(2): 1385-1393, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30726665

RESUMEN

The coordination-restricted ortho-site C-H bond activation and dehydrogenative homocoupling of 4,4'-(1,3-phenylene)dipyridine (1,3-BPyB) and 4,4'-(1,4-phenylene)dipyridine (1,4-BPyB) on different metal surfaces were studied by a combination of scanning tunneling microscopy, noncontact atomic force microscopy, and density functional theory calculations. The coupling products on Cu(111) exhibited certain configurations subject to the spatial restriction of robust two-fold Cu-N coordination bonds. Compared to the V-shaped 1,3-BPyB, the straight backbone of 1,4-BPyB helped to further reduce the variety of reactive products. By utilizing the three-fold coordination of Fe atoms with 1,4-BPyB molecules on Au(111), a large-scale network containing single products was constructed. Our results offer a promising protocol for controllable on-surface synthesis with the aid of robust coordination interactions.

14.
Chem Commun (Camb) ; 54(66): 9135-9138, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30059079

RESUMEN

Tuning the spin-dependent electron transport through molecules is of fundamental importance in single-molecule spintronics. Here, the transport properties of iron phthalocyanine on Au(111) was investigated by a combination of scanning tunneling microscopy and density functional theory calculations. Using high-resolution scanning tunneling spectroscopy performed at 0.5 K, a Kondo resonance was observed on FePc. After removing its eight outermost hydrogen atoms, the spectroscopic feature changed into a double-step structure, which reflected inelastic transitions of molecular spin states. The density functional theory calculations revealed that the coupling between Fe and Au(111) became much weaker after cutting the hydrogen atoms. This explained the change of the spin-related fingerprints in the differential spectra.

15.
Dalton Trans ; 45(42): 16566-16569, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27391300

RESUMEN

Single Co adatoms adsorbed on a double-layer NaCl film supported by Cu(111) were negatively charged after applying a positive voltage pulse to the sample in a scanning tunnelling microscope. Density functional calculations showed that the magnetic moment of Co changed from 3µB to 2.2µB after charge state manipulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA