Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 14(1): 19537, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174674

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a serious disease that poses a significant threat to the pig industry. This study focused on analyzing the Spike protein of PEDV, which harbors crucial antigenic determinants, in identifying dominant epitopes. Immunoinformatics tools were used to screen for B-cell, CD4+ and CD8+ predominance epitopes. These epitopes were then connected to the N-terminal of ferritin to form a self-assembled nanoparticle vaccine. Various physical and chemical properties of the candidate vaccine were analyzed, including secondary structure prediction, tertiary structure modeling, molecular docking, immune response simulation and computer cloning. The results demonstrated that the candidate vaccine was antigenic, soluble, stable, non-allergic, and formed a stable complex with the target receptor TLR-3. Immune simulation analysis showed that the candidate vaccine effectively stimulated both cellular and humoral reactions, leading to increased related cytokines production. Furthermore, efficient and stable expression of the candidate vaccine was achieved through reverse translation in the Escherichia coli K12 expression system following codon optimization and in silico cloning. The developed nanoparticle candidate vaccine in this study holds promise as an effective PEDV vaccine candidate, offering a new approach for the research, development and improvement of vaccines targeting porcine enteric diarrhea coronavirus.


Asunto(s)
Infecciones por Coronavirus , Inmunoinformática , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas Virales , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Epítopos/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Inmunoinformática/métodos , Simulación del Acoplamiento Molecular , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas Virales/inmunología
2.
Front Vet Sci ; 9: 1080927, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36937700

RESUMEN

The regional outbreak of the Swine acute diarrhea syndrome coronavirus (SADS-CoV) has seriously threatened the swine industry. There is an urgent need to discover safe and effective vaccines to contain them quickly. The coronavirus spike protein mediates virus entry into host cells, one of the most important antigenic determinants and a potential vaccine target. Therefore, this study aims to conduct a predictive analysis of the epitope of S protein B cells and T cells (MHC class I and class II) by immunoinformatics methods by screening and identifying protective antigenic epitopes that induce major neutralized antibodies and activate immune responses to construct epitope vaccines. The study explored primary, secondary, and tertiary structures, disulfide bonds, protein docking, immune response simulation, and seamless cloning of epitope vaccines. The results show that the spike protein dominant epitope of the screening has a high conservativeness and coverage of IFN-γ, IL-4-positive Th epitope, and CTL epitope. The constructed epitope vaccine interacts stably with TLR-3 receptors, and the immune response simulation shows good immunogenicity, which could effectively activate humoral and cellular immunity. After codon optimization, it was highly likely to be efficiently and stably expressed in the Escherichia coli K12 expression system. Therefore, the constructed epitope vaccine will provide a new theoretical basis for the design of SADS-CoV antiviral drugs and related research on coronaviruses such as SARS-CoV-2.

3.
J Vet Sci ; 22(2): e23, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33774939

RESUMEN

BACKGROUND: Pseudorabies (PR), caused by the pseudorabies virus (PRV), is an endemic disease in some regions of China. Although there are many reports on epidemiological investigations into pseudorabies, information on PRV gI antibody dynamics in one pig farm is sparse. OBJECTIVES: To diagnose PR and analyze the course of PR eradication in one pig farm. METHODS: Ten brains and 1,513 serum samples from different groups of pigs in a pig farm were collected to detect PRV gE gene and PRV gI antibody presence using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS: The July 2015 results indicated that almost all brain samples were PRV gE gene positive, but PRV gI antibody results in the serum samples of the same piglets were all negative. In the boar herd, from October 2015 to July 2018 three positive individuals were culled in October 2015, and the negative status of the remaining boars was maintained in the following tests. In the sow herd, the PRV gI antibody positive rate was always more than 70% from October 2015 to October 2017; however, it decreased to 27% in January 2018 but increased to 40% and 52% in April and July 2018, respectively. The PRV gI antibody positive rate in 100-day pigs markedly decreased in October 2016 and was maintained at less than 30% in the following tests. For 150-day pigs, the PRV gI antibody positive rate decreased notably to 10% in April 2017 and maintained a negative status from July 2017. The positive trend of PRV gI antibody with an increase in pig age remarkably decreased in three tests in 2018. CONCLUSIONS: The results indicate that serological testing is not sensitive in the early stage of a PRV infection and that gilt introduction is a risk factor for a PRV-negative pig farm. The data on PRV gI antibody dynamics can provide reference information for pig farms wanting to eradicate PR.


Asunto(s)
Anticuerpos Antivirales/inmunología , Seudorrabia/diagnóstico , Seudorrabia/inmunología , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/inmunología , Crianza de Animales Domésticos/métodos , Animales , China , Femenino , Masculino , Sus scrofa , Porcinos
4.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962127

RESUMEN

Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23-46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.


Asunto(s)
Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Imidazoles/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/farmacología , Humanos , Imidazoles/síntesis química , Imidazoles/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA