Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Cancer Res Clin Oncol ; 150(9): 424, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297944

RESUMEN

PURPOSE: This study aimed to investigate the effect of MYO3B on endometrial cancer (EC) proliferation and invasion. METHODS: The expression of MYO3B in EC tissues and cells was analyzed using TCGA database, immunohistochemical staining, real-time PCR, and western blot (WB). Cell proliferation was detected by CCK8, Annexin V-APC/PI flow cytometry was used to detect apoptosis, intracellular calcium ion (Ca2+) was detected by flow cytometry with Fluo-4 AM fluorescent probe, cell migration by scratch assay, and cell invasion by Transwell assay, and the expression of proteins related to Ca2+ homeostasis and RhoA/ROCK1 signaling pathway was detected by WB and immunofluorescence staining. RESULTS: The expression of MYO3B was an influential factor in EC recurrence, and the expression of MYO3B was significantly up-regulated in EC tissues and cells, but down-regulated in KLE cells, and MYO3B knockdown inhibited the proliferation, migration, and invasion ability of EC cells and promoted apoptosis, suggesting that MYO3B plays a tumor-promoting role in EC. Furthermore, MYO3B knockdown decreased Ca2+ concentration in EC cells and the RhoA/ROCK1 signaling pathway was inhibited, and the effect of MYO3B knockdown on RhoA/ROCK1 signaling was reversed by treatment with the Calmodulin agonist CALP-2, and the effects of MYO3B knockdown on cell proliferation, migration, and invasion were reversed after treatment with the RhoA agonist U-46,619. CONCLUSION: MYO3B promotes the proliferation and migration of endometrial cancer cells via Ca2+-RhoA/ROCK1 signaling pathway. High expression of MYO3B may be a biomarker for EC metastasis.


Asunto(s)
Calcio , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Endometriales , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Humanos , Femenino , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/genética , Proteína de Unión al GTP rhoA/metabolismo , Calcio/metabolismo , Movimiento Celular , Apoptosis , Línea Celular Tumoral , Invasividad Neoplásica
2.
J Control Release ; 374: 400-414, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153721

RESUMEN

Cellular iron is inseparably related with the proper functionalities of mitochondria for its potential to readily donate and accept electrons. Though promising, the available endeavors of iron chelation antitumor therapies have tended to be adjuvant therapies. Herein, we conceptualized and fabricated an "iron-phagy" nanoparticle (Dp44mT@HTH) capable of inducing the absolute devastation of mitochondria via inhibiting the autophagy-removal of impaired ones for promoting cancer cell death. The Dp44mT@HTH with hyaluronic acid (HA) as hydrophilic shell can specifically target the highly expressed CD44 receptors on the surface of 4T1 tumor cells. After internalization and lysosomal escape, the nanoparticle disassembles in response to the reactive oxygen species (ROS), subsequently releasing the iron chelator Dp44mT and autophagy-inhibitory drug hydroxychloroquine (HCQ). Dp44mT can then seize cellular Fe2+ to trigger mitochondrial dysfunction via respiratory chain disturbance, while HCQ not only lessens Fe2+ intake, but also impedes fusions of autophagosomes and lysosomes. Consequentially, Dp44mT@HTH induces irreversible mitochondrial impairments, in this respect creating a substantial toxic stack state that induces apoptosis and cell death. Initiating from the perspective of endogenous substances, this strategy illuminates the promise of iron depletion therapy via irreversible mitochondrial damage induction for anticancer treatment.


Asunto(s)
Antineoplásicos , Hierro , Mitocondrias , Nanopartículas , Especies Reactivas de Oxígeno , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Hierro/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Quelantes del Hierro/administración & dosificación , Quelantes del Hierro/farmacología , Autofagia/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Ácido Hialurónico/química , Hidroxicloroquina/farmacología , Hidroxicloroquina/administración & dosificación , Apoptosis/efectos de los fármacos , Ratones , Humanos , Ratones Endogámicos BALB C , Receptores de Hialuranos/metabolismo , Femenino , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos
3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39150014

RESUMEN

This study aimed to characterize the effects of different dietary forms of supplemental manganese (Mn) on hepatic lipid deposition, gene expression, and enzyme activity in liver fat metabolism in 42-d-old broiler chickens. In total 420 one-day-old Arbor Acres (AA) broilers (rooster:hen = 1:1) were assigned randomly based on body weight and sex to 1 of 6 treatments (10 replicate cages per treatment and 7 broilers per replicate cage) in a completely randomized design using a 2 (sex) × 3 (diet) factorial arrangement. The 3 diets were basal control diets without Mn supplementation and basal diets supplemented with either Mn sulfate or Mn proteinate. No sex × diet interactions were observed in any of the measured indexes; thus, the effect of diet alone was presented in this study. Dietary Mn supplementation increased Mn content in the plasma and liver, adipose triglyceride lipase (ATGL) activity, and ATGL mRNA and its protein expression in the liver by 5.3% to 24.0% (P < 0.05), but reduced plasma triglyceride (TG), total cholesterol, and low-density lipoprotein (LDL-C) levels, liver TG content, fatty acid synthase (FAS) and malic enzyme (ME) activities, mRNA expression of sterol-regulatory element-binding protein 1 (SREBP1), FAS, stearoyl-coA desaturase (SCD), and ME, as well as the protein expression of SREBP1 and SCD in the liver by 5.5% to 22.8% (P < 0.05). No differences were observed between the 2 Mn sources in all of the determined parameters. Therefore, it was concluded that dietary Mn supplementation, regardless of Mn source, decreased hepatic lipid accumulation in broilers by inhibiting SREBP1 and SCD expression, FAS and ME activities, and enhancing ATGL expression and activity.


Dietary manganese supplementation regulates lipid deposition in broiler chickens, with the liver being a significant site of lipid metabolism. This study investigated the effects of different dietary forms of supplemental manganese on hepatic lipid deposition, gene expression, and enzyme activity in the liver fat metabolism of broiler chickens. The results showed that dietary manganese supplementation decreased the hepatic lipid accumulation of broilers by inhibiting the expression of sterol-regulatory element-binding protein 1 (SREBP1) and stearoyl-coA desaturase (SCD), as well as fatty acid synthase (FAS) and malic enzyme (ME) activities, and enhancing the expression and activity of adipose triglyceride lipase (ATGL). This reduction in excessive fat production will help improve poultry health and mitigate losses in the poultry industry.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Metabolismo de los Lípidos , Hígado , Manganeso , Animales , Pollos/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Dieta/veterinaria , Alimentación Animal/análisis , Manganeso/administración & dosificación , Manganeso/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Distribución Aleatoria , Fenómenos Fisiológicos Nutricionales de los Animales
4.
Mol Biomed ; 5(1): 32, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138733

RESUMEN

Endometrial cancer (UCEC) is one of three major malignant tumors in women. The HOX gene regulates tumor development. However, the potential roles of HOX in the expression mechanism of multiple cell types and in the development and progression of tumor microenvironment (TME) cell infiltration in UCEC remain unknown. In this study, we utilized both the The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database to analyze transcriptome data of 529 patients with UCEC based on 39 HOX genes, combing clinical information, we discovered HOX gene were a pivotal factor in the development and progression of UCEC and in the formation of TME diversity and complexity. Here, a new scoring system was developed to quantify individual HOX patterns in UCEC. Our study found that patients in the low HOX score group had abundant anti-tumor immune cell infiltration, good tumor differentiation, and better prognoses. In contrast, a high HOX score was associated with blockade of immune checkpoints, which enhances the response to immunotherapy. The Real-Time quantitative PCR (RT-qPCR) and Immunohistochemistry (IHC) exhibited a higher expression of the HOX gene in the tumor patients. We revealed that the significant upregulation of the HOX gene in the epithelial cells can activate signaling pathway associated with tumour invasion and metastasis through single-cell RNA sequencing (scRNA-seq), such as nucleotide metabolic proce and so on. Finally, a risk prognostic model established by the positive relationship between HOX scores and cancer-associated fibroblasts (CAFs) can predict the prognosis of individual patients by scRNA-seq and transcriptome data sets. In sum, HOX gene may serve as a potential biomarker for the diagnosis and prediction of UCEC and to develop more effective therapeutic strategies.


Asunto(s)
Neoplasias Endometriales , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Humanos , Neoplasias Endometriales/genética , Neoplasias Endometriales/inmunología , Neoplasias Endometriales/patología , Femenino , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Transcriptoma , Genes Homeobox/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Persona de Mediana Edad
6.
J Anim Sci Biotechnol ; 15(1): 115, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217350

RESUMEN

BACKGROUND: The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. RESULTS: The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1ß contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1ß contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. CONCLUSIONS: Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.

7.
Chin J Integr Med ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039342

RESUMEN

OBJECTIVE: To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism. METHODS: In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1ß, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively. RESULTS: Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1ß, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1ß, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis. CONCLUSION: AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.

8.
Gynecol Endocrinol ; 40(1): 2373741, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39034929

RESUMEN

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders related to adrenal steroid biosynthesis, and mainly caused by mutations in the CYP21A2 gene encoding 21-hydroxylase. Adrenal tumors are common in CAH, but functional adrenal tumors are rare. Here, we report a 17-year-old female with virilized external genitalia and primary amenorrhea, accompanied by a right adrenal tumor. Her 17-OHP level was normal, cortisol and androgen levels were significantly elevated, and the tumor pathology showed adrenal cortical adenoma. Gene testing for CYP21A2 showed c.518T > A in exon 4 and c.29313C > G in intron 2. The possibility of untreated classic CAH with 21-OH deficiency causing functional adrenal cortical adenoma should be considered. When clinical diagnosis highly considers CAH and cannot rule out the influence of functional adrenal tumors' secretion function on 17-OHP, gene mutation analysis should be performed.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Hiperplasia Suprarrenal Congénita , Adenoma Corticosuprarrenal , Esteroide 21-Hidroxilasa , Humanos , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/complicaciones , Femenino , Adolescente , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/diagnóstico , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/diagnóstico , Adenoma Corticosuprarrenal/complicaciones , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo
9.
Virology ; 597: 110130, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38850894

RESUMEN

Porcine rotavirus (PoRV) is one of the main pathogens causing diarrhea in piglets, and multiple genotypes coexist. However, an effective vaccine is currently lacking. Here, the potential adjuvant of nonstructural protein 4 (NSP4) and highly immunogenic structural protein VP4 prompted us to construct recombinant NSP486-175aa (NSP4*) and VP426-476aa (VP4*) proteins, combine them as immunogens to evaluate their efficacy. Results indicated that NSP4* enhanced systemic and local mucosal responses induced by VP4*. The VP4*-IgG, VP4*-IgA in feces and IgA-secreting cells in intestines induced by the co-immunization were significantly higher than those induced by VP4* alone. Co-immunization of NSP4* and VP4* also induced strong cellular immunity with significantly increased IFN-λ than the single VP4*. Summarily, the NSP4* as a synergistical antigen exerted limited effects on the PoRV NAbs elevation, but conferred strong VP4*-specific mucosal and cellular efficacy, which lays the foundation for the development of a more effective porcine rotavirus subunit vaccine.


Asunto(s)
Anticuerpos Antivirales , Proteínas de la Cápside , Inmunidad Mucosa , Infecciones por Rotavirus , Rotavirus , Proteínas no Estructurales Virales , Animales , Porcinos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Rotavirus/inmunología , Rotavirus/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/prevención & control , Anticuerpos Antivirales/inmunología , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/genética , Toxinas Biológicas/genética , Toxinas Biológicas/inmunología , Glicoproteínas/genética , Glicoproteínas/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Inmunoglobulina A/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Heces/virología , Inmunoglobulina G/inmunología , Antígenos Virales/inmunología , Antígenos Virales/genética
10.
Exp Neurol ; 379: 114870, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897539

RESUMEN

BACKGROUND AND PURPOSE: The pathophysiological features of acute ischemic stroke (AIS) often involve dysfunction of the blood-brain barrier (BBB), characterized by the degradation of tight junction proteins (Tjs) leading to increased permeability. This dysfunction can exacerbate cerebral injury and contribute to severe complications. The permeability of the BBB fluctuates during different stages of AIS and is influenced by various factors. Developing effective therapies to restore BBB function remains a significant challenge in AIS treatment. High levels of vascular endothelial growth factor (VEGF) in the early stages of AIS have been shown to worsen BBB breakdown and stroke progression. Our study aimed to investigate the protective effects of the VEGF receptor inhibitor Axitinib on BBB dysfunction and cerebral ischemia/reperfusion-induced injury. METHODS: BEnd3 cell exposed to oxygen-glucose deprivation (OGD) model was constructed to estimate pharmacological activity of Axitinib (400 ng/ml) on anti-apoptosis and pathological barrier function recovery. In vivo, rats were subjected to a 1 h transient middle cerebral artery occlusion and 23 h reperfusion (tMCAO/R) to investigate the permeability of BBB and cerebral tissue damage. Axitinib was administered through the tail vein at the beginning of reperfusion. BBB integrity was assessed by Evans blue leakage and the expression levels of Tjs claudin-5 and occludin. RESULTS: Our research revealed that co-incubation with Axitinib enhanced the cell viability of OGD-insulted bEnd3 cells, decreased LDH leakage rate, and suppressed the expression of apoptosis-related proteins cytochrome C and Bax. Axitinib also mitigated the damage to Tjs and facilitated the restoration of transepithelial electrical resistance in OGD-insulted bEnd.3 cells. In vivo, Axitinib administration reduced intracerebral Evans blue leakage and up-regulated the expression of Tjs in the penumbra brain tissue in tMCAO/R rats. Notably, 10 mg/kg Axitinib exerted a significant anti-ischemic effect by decreasing cerebral infarct volume and brain edema volume, improving neurological function, and reducing pro-inflammatory cytokines IL-6 and TNF-α in the brain. CONCLUSIONS: Our study highlights Axitinib as a potent protectant of blood-brain barrier function, capable of promoting pathological blood-brain barrier recovery through VEGF inhibition and increased expression of tight junction proteins in AIS. This suggests that VEGF antagonism within the first 24 h post-stroke could be a novel therapeutic approach to enhance blood-brain barrier function and mitigate ischemia-reperfusion injury.


Asunto(s)
Axitinib , Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Axitinib/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Ratas , Masculino , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
11.
PLoS One ; 19(5): e0304365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820434

RESUMEN

OBJECTIVE: To explore the molecular mechanism of Astragaloside IV (AS-IV) in alleviating renal fibrosis by inhibiting Urotensin II-induced pyroptosis and epithelial-mesenchymal transition of renal tubular epithelial cells. METHODS: Forty SD rats were randomly divided into control group without operation: gavage with 5ml/kg/d water for injection and UUO model group: gavage with 5ml/kg/d water for injection; UUO+ AS-IV group (gavage with AS-IV 20mg/kg/d; and UUO+ losartan potassium group (gavage with losartan potassium 10.3mg/kg/d, with 10 rats in each group. After 2 weeks, Kidney pathology, serum Urotensin II, and cAMP concentration were detected, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1ß were detected by immunohistochemistry. Rat renal tubular epithelial cells were cultured in vitro, and different concentrations of Urotensin II were used to intervene for 24h and 48h. Cell proliferation activity was detected using the CCK8 assay. Suitable concentrations of Urotensin II and intervention time were selected, and Urotensin II receptor antagonist (SB-611812), inhibitor of PKA(H-89), and AS-IV (15ug/ml) were simultaneously administered. After 24 hours, cells and cell supernatants from each group were collected. The cAMP concentration was detected using the ELISA kit, and the expression of PKA, α-SMA, FN, IL-1ß, NLRP3, GSDMD-N, and Caspase-1 was detected using cell immunofluorescence, Western blotting, and RT-PCR. RESULTS: Renal tissue of UUO rats showed renal interstitial infiltration, tubule dilation and atrophy, renal interstitial collagen fiber hyperplasia, and serum Urotensin II and cAMP concentrations were significantly higher than those in the sham operation group (p <0.05). AS-IV and losartan potassium intervention could alleviate renal pathological changes, and decrease serum Urotensin II, cAMP concentration levels, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1ß in renal tissues (p <0.05). Urotensin II at a concentration of 10-8 mol/L could lead to the decrease of cell proliferation, (p<0.05). Compared with the normal group, the cAMP level and the PKA expression were significantly increased (p<0.05). After intervention with AS-IV and Urotensin II receptor antagonist, the cAMP level and the expression of PKA were remarkably decreased (p<0.05). Compared with the normal group, the expression of IL-1ß, NLRP3, GSDMD-N, and Caspase-1 in the Urotensin II group was increased (p<0.05), which decreased in the AS-IV and H-89 groups. CONCLUSION: AS-IV can alleviate renal fibrosis by inhibiting Urotensin II-induced pyroptosis of renal tubular epithelial cells by regulating the cAMP/PKA signaling pathway.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Células Epiteliales , Túbulos Renales , Piroptosis , Saponinas , Transducción de Señal , Triterpenos , Urotensinas , Animales , Masculino , Ratas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis , Enfermedades Renales/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Enfermedades Renales/etiología , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Ratas Sprague-Dawley , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Urotensinas/metabolismo
12.
J Virol ; 98(5): e0021224, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591886

RESUMEN

Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.


Asunto(s)
Vacunas contra Rotavirus , Vacunas de Subunidad , Animales , Femenino , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Diarrea/prevención & control , Diarrea/virología , Diarrea/veterinaria , Diarrea/inmunología , Genotipo , Inmunidad Celular , Ratones Endogámicos BALB C , Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Vacunación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación
13.
Microb Pathog ; 190: 106612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467166

RESUMEN

Rotavirus group A (RVA) is a main pathogen causing diarrheal diseases in humans and animals. Various genotypes are prevalent in the Chinese pig herd. The genetic diversity of RVA lead to distinctly characteristics. In the present study, a porcine RVA strain, named AHFY2022, was successfully isolated from the small intestine tissue of piglets with severe diarrhea. The AHFY2022 strain was identified by cytopathic effects (CPE) observation, indirect immunofluorescence assay (IFA), electron microscopy (EM), high-throughput sequencing, and pathogenesis to piglets. The genomic investigation using NGS data revealed that AHFY2022 exhibited the genotypes G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1, using the online platform the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv-brc.org/). Moreover, experimental inoculation in 5-day-old and 27-day-old piglets demonstrated that AHFY2022 caused severe diarrhea, fecal shedding, small intestinal villi damage, and colonization in all challenged piglets. Taken together, our results detailed the virological features of the porcine rotavirus G9P[23] from China, including the whole-genome sequences, genotypes, growth kinetics in MA104 cells and the pathogenicity in suckling piglets.


Asunto(s)
Diarrea , Genoma Viral , Genotipo , Filogenia , Infecciones por Rotavirus , Rotavirus , Enfermedades de los Porcinos , Animales , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Rotavirus/patogenicidad , Porcinos , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/veterinaria , China , Enfermedades de los Porcinos/virología , Diarrea/virología , Diarrea/veterinaria , Intestino Delgado/virología , Intestino Delgado/patología , Heces/virología , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Adv Healthc Mater ; 13(8): e2302939, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38117094

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative illness characterized by intracellular tau-phosphorylation, ß-amyloid (Aß) plaques accumulation, neuroinflammation, and impaired behavioral ability. Owing to the lack of effective brain delivery approaches and the presence of the blood-brain barrier (BBB), current AD therapeutic endeavors are severely limited. Herein, a multifunctional delivery system (RVG-DDQ/PDP@siBACE1) is elaborately combined with a protein kinase B (AKT) agonist (SC79) for facilitating RVG-DDQ/PDP@siBACE1 to target and penetrate BBB, enter brain parenchyma, and further accumulate in AD brain lesion. Moreover, compared with the unitary dose of RVG-DDQ/PDP@siBACE1, this collaborative therapy strategy exhibits a distinctive synergistic function including scavenging reactive oxygen species (ROS), decreasing of Aß production, alleviating neuroinflammation by promoting the polarized microglia into the anti-inflammatory M2-like phenotype and significantly enhancing the cognitive functions of AD mice. More strikingly, according to these results, an innovative signaling pathway "lncRNA MALAT1/miR-181c/BCL2L11" is found that can mediate the neuronal apoptosis of AD. Taken together, combining the brain targeted delivery system with noninvasive BBB opening can provide a promising strategy and platform for targeting treatment of AD and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/terapia , Barrera Hematoencefálica/patología , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
Biomacromolecules ; 24(11): 4731-4742, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37672635

RESUMEN

The tumor microenvironment (TME) of breast cancer is hypoxic, which can promote tumor progression, including invasion and metastasis, and limit the efficacy of anti-tumor treatment. Nitric oxide (NO) can dilate blood vessels, effectively alleviate hypoxia, and regulate the TME, which has the potential to improve the anti-tumor therapeutic efficacy. Here, chitosan (CO) and octadecylamine (ODA) were linked by the disulfide bond, and the LinTT1 peptide was linked onto CO-SS-ODA for targeting tumor cells and endothelial cells in tumors. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) was connected to CO. Doxorubicin (DOX) was encapsulated, and GSH hierarchically responsive polymer micelles (TSCO-SS-ODA/DOX) were constructed for the treatment of breast cancer. The micelles had differently responsive drug release in different GSH concentrations. In endothelial cells, the micelles rapidly responded to release NO. In tumor cells, the disulfide bond rapidly broke and released DOX to effectively kill tumor cells. The disulfide bond was not sensitive to GSH concentration in endothelial cells, which had less release of DOX. The killing effect of the micelles to endothelial cells was much lower than that to tumor cells. The cell selective drug release of the drug delivery systems enabled safe and effective treatment of drugs. TSCO-SS-ODA/DOX, which had the excellent ability to target tumors, can alleviate tumor hypoxia, decrease the infiltration of M2 macrophages in tumors, increase the infiltration of M1 macrophages in tumors, and remodel the TME. Notably, TSCO-SS-ODA/DOX can significantly inhibit the growth of the primary tumor and effectively inhibit tumor metastasis. The drug delivery system provided a potential solution for effectively treating breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Micelas , Células Endoteliales , Microambiente Tumoral , Doxorrubicina/química , Polímeros/química , Disulfuros , Concentración de Iones de Hidrógeno
16.
Mol Pharm ; 20(10): 5078-5089, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37728215

RESUMEN

The abnormal tumor blood vessels with high leakage can promote tumor cells to infiltrate into the systemic circulation and increase the risk of tumor metastasis. In addition, chemotherapy may destroy tumor blood vessels and further aggravate metastasis. Normalizing tumor blood vessels can reduce vascular leakage and increase vascular integrity. The simultaneous administration of vascular normalization drugs and chemotherapy drugs may resist the blood vessels' destruction of chemotherapy. Here, multifunctional nanoparticles (CCM@LMSN/DOX&St), which combined chemotherapy with tumor blood vessel normalization, were prepared for the treatment of breast cancer. The results showed that CCM@LMSN/DOX&St-loaded sunitinib (St) promoted the expression of junction proteins Claudin-4 and VE-cadherin of endothelial cells, reversed the destruction of DOX to the endothelial cell layer, protected the integrity of the endothelial cell layer, and inhibited the migration of 4T1 tumor cells across the endothelial cell layer. In vivo experiments showed that CCM@LMSN/DOX&St effectively inhibited tumor growth in situ; what is exciting was that it also inhibited distal metastasis of breast cancer. CCM@LMSN/DOX&St encapsulated with St can normalize tumor blood vessels, reverse the damage of DOX to tumor blood vessels, increase the integrity of blood vessels, and prevent tumor cell invasion into blood vessels, which can inhibit breast cancer spontaneous metastasis and reduce chemotherapy-induced metastasis. This drug delivery platform effectively inhibited the progression of tumors and provided a promising solution for effective tumor treatment.


Asunto(s)
Neoplasias de la Mama , Nanopartículas Multifuncionales , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/patología , Doxorrubicina , Células Endoteliales/metabolismo , Línea Celular Tumoral , Melanoma Cutáneo Maligno
17.
DNA Cell Biol ; 42(10): 594-607, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37751175

RESUMEN

To investigate the effect of astragaloside IV (AS) on podocytes pyroptosis in diabetic kidney disease (DKD). Forty male Sprague-Dawley rats were randomly divided into normal group (n = 10) and model group (n = 30). Rats in model group were intraperitoneally injected streptozotocin (60 mg/kg) for 3 days to induce DKD. Then rats were divided into DKD group, AS group, and UBCS group. The AS group was given 40 mg/kg/d of AS by gavage, and UBCS group was given 50 mg/kg/d of UBCS039 by gavage, and normal group and DKD group were given the same amount saline for 8 weeks, once a day. Hematoxylin-eosin and masson staining were used to observe pathology of kidney. Rat podocytes were divided into normal group, mannitol hypertonic group, high-glucose group, UBCS group, OSS group, and AS group. Western blotting, quantitative real-time polymerase chain reaction, immunofluorescence, and flow cytometry were used to analyze pyroptosis-related markers and reactive oxygen species (ROS) levels. Results showed that AS inhibited ROS and alleviated podocytes pyroptosis in rats by increasing expression of sirtuin 6 (SIRT6) and decreasing expression of hypoxia inducible factor 1 subunit alpha (HIF-1α). UBCS039 and AS enhanced SIRT6 level, decreased HIF-1α level, and finally improved pyroptosis of podocytes in vitro, whereas OSS-128167 showed the opposite effect for podocytes pyroptosis. AS improved podocytes pyroptosis in DKD by regulating SIRT6/HIF-1α pathway, thereby alleviating injury of DKD.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Piroptosis , Saponinas , Sirtuinas , Triterpenos , Animales , Masculino , Ratas , Nefropatías Diabéticas/tratamiento farmacológico , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Piroptosis/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico
18.
Clin Exp Pharmacol Physiol ; 50(11): 855-866, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37582493

RESUMEN

One of the toxic side effects of methotrexate (MTX) is enteritis. Aucubin, an iridoid glycoside derived from traditional medicinal herbs, has been proven to have anti-inflammation, anti-apoptosis and anti-oxidation properties. This work explored the effect and mechanism of aucubin in treating MTX-induced enteritis in a rat model. Two doses of aucubin (5 and 10 mg/kg) were adopted for the assessment of its pharmacological activity. We observed that in rats with MTX-induced enteritis, the body weight and small intestinal weight decreased. The intestine barrier was injured, as reflected by pathological examinations and an increase in D-lactate and diamine oxidase concentration in serum. Intestinal inflammation was shown by the observation of macrophages in the intestine and the concentrations of inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in serum. The NLR family pyrin domain containing 3 (NLRP3) inflammasome was shown to be activated by the enhancement of NLRP3, cleaved-caspase 1, IL-18 and IL-1ß. Moreover, autophagy was reflected by transmission electron microscopy as slightly induced, along with changes in autophagy-related markers microtubule-associated protein 1 light chain 3 (LC3) and Beclin1. Remarkably, aucubin treatment attenuated the MTX-induced disease activity index increase, intestinal damage, inflammatory response and NLRP3 inflammasome activation, but provoked autophagy. Rapamycin, an autophagy activator, showed similar therapeutic effects to aucubin on MTX-induced enteritis. However, 3-methyladenine, an autophagy inhibitor, reversed the protective effects of aucubin. These findings prompted the hypothesis that aucubin alleviates MTX-induced enteritis by aggravating autophagy. This study might provide evidence for further investigation on the therapeutic role of aucubin in MTX-resulted enteritis.


Asunto(s)
Enteritis , Inflamasomas , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Metotrexato/toxicidad , Autofagia , Enteritis/inducido químicamente , Enteritis/tratamiento farmacológico
19.
Front Bioeng Biotechnol ; 11: 1159297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425353

RESUMEN

We investigated the optimum co-culture ratio with the highest biological nitrogen removal rate, revealing that chemical oxygen demand, total nitrogen (TN), and ammoniacal nitrogen (NH3-N) removal was increased in the Chlorella pyrenoidosa and Yarrowia lipolytica co-culture system at a 3:1 ratio. Compared with the control, TN and NH3-N content in the co-incubated system was decreased within 2-6 days. We investigated mRNA/microRNA (miRNA) expression in the C. pyrenoidosa and Y. lipolytica co-culture after 3 and 5 days, identifying 9885 and 3976 differentially expressed genes (DEGs), respectively. Sixty-five DEGs were associated with Y. lipolytica nitrogen, amino acid, photosynthetic, and carbon metabolism after 3 days. Eleven differentially expressed miRNAs were discovered after 3 days, of which two were differentially expressed and their target mRNA expressions negatively correlated with each other. One of these miRNAs regulates gene expression of cysteine dioxygenase, hypothetical protein, and histone-lysine N-methyltransferase SETD1, thereby reducing amino acid metabolic capacity; the other miRNA may promote upregulation of genes encoding the ATP-binding cassette, subfamily C (CFTR/MRP), member 10 (ABCC10), thereby promoting nitrogen and carbon transport in C. pyrenoidosa. These miRNAs may further contribute to the activation of target mRNAs. miRNA/mRNA expression profiles confirmed the synergistic effects of a co-culture system on pollutant disposal.

20.
Nanoscale ; 15(27): 11625-11646, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37377137

RESUMEN

Ischemic stroke is characterized by high morbidity, disability, and mortality. Unfortunately, the only FDA-approved pharmacological thrombolytic, alteplase, has a narrow therapeutic window of only 4.5 h. Other drugs like neuroprotective agents have not been clinically used because of their low efficacy. To improve the efficacy of neuroprotective agents and the effectiveness of rescue therapies for hyperacute ischemic stroke, we investigated and verified the variation trends of the blood-brain barrier (BBB) permeability and regional cerebral blood flow over 24 h in rats that had ischemic strokes. Hypoperfusion and the biphasic increase of BBB permeability are still the main limiting factors for lesion-specific drug distribution and drug brain penetration. Herein, the nitric oxide donor hydroxyurea (HYD) was reported to downregulate the expression of tight junction proteins and upregulate intracellular nitric oxide content in the brain microvascular endothelial cells subjected to oxygen-glucose deprivation, which was shown to facilitate the transport of liposomes across  brain endothelial monolayer in an in vitro model. HYD also increased the BBB permeability and promoted microcirculation in the hyperacute phase of stroke. The neutrophil-like cell-membrane-fusogenic hypoxia-sensitive liposomes exhibited excellent performance in targeting the inflamed brain microvascular endothelial cells, enhancing cell association, and promoting rapid hypoxic-responsive release in the hypoxic microenvironment. Overall, the combined HYD and hypoxia-sensitive liposome dosing regimen effectively decreased the cerebral infarction volume and relieved neurological dysfunction in rats that had ischemic strokes; these therapies were involved in the anti-oxidative stress effect and the neurotrophic effect mediated by macrophage migration inhibitory factor.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Ratas , Animales , Liposomas/metabolismo , Hidroxiurea/farmacología , Hidroxiurea/metabolismo , Hidroxiurea/uso terapéutico , Accidente Cerebrovascular Isquémico/metabolismo , Fármacos Neuroprotectores/farmacología , Células Endoteliales , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Hipoxia , Isquemia Encefálica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA