Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
ACS Appl Mater Interfaces ; 16(20): 26234-26244, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38711193

RESUMEN

The huge volume expansion/contraction of silicon (Si) during the lithium (Li) insertion/extraction process, which can lead to cracking and pulverization, poses a substantial impediment to its practical implementation in lithium-ion batteries (LIBs). The development of low-strain Si-based composite materials is imperative to address the challenges associated with Si anodes. In this study, we have engineered a TiSi2 interface on the surface of Si particles via a high-temperature calcination process, followed by the introduction of an outermost carbon (C) shell, leading to the construction of a low-strain and highly stable Si@TiSi2@NC composite. The robust TiSi2 interface not only enhances electrical and ionic transport but also, more critically, significantly mitigates particle cracking by restraining the stress/strain induced by volumetric variations, thus alleviating pulverization during the lithiation/delithiation process. As a result, the as-fabricated Si@TiSi2@NC electrode exhibits a high initial reversible capacity (2172.7 mAh g-1 at 0.2 A g-1), superior rate performance (1198.4 mAh g-1 at 2.0 A g-1), and excellent long-term cycling stability (847.0 mAh g-1 after 1000 cycles at 2.0 A g-1). Upon pairing with LiNi0.6Co0.2Mn0.2O2 (NCM622), the assembled Si@TiSi2@NC||NCM622 pouch-type full cell exhibits exceptional cycling stability, retaining 90.1% of its capacity after 160 cycles at 0.5 C.

2.
Mikrochim Acta ; 191(5): 279, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647729

RESUMEN

The therapeutic effect of gefitinib on colorectal cancer (CRC) is unclear, but it has been reported that stromal cells in the tumor microenvironment may have an impact on drug sensitivity. Herein, we established a microfluidic co-culture system and explored the sensitivity of CRC cells co-cultured with cancer-associated fibroblasts (CAFs) to gefitinib. The system consisted of a multichannel chip and a Petri dish. The chambers in the chip and dish were designed to continuously supply nutrients for long-term cell survival and create chemokine gradients for driving cell invasion without any external equipment. Using this system, the proliferation and invasiveness of cells were simultaneously evaluated by quantifying the area of cells and the migration distance of cells. In addition, the system combined with live cell workstation could evaluate the dynamic drug response of co-cultured cells and track individual cell trajectories in real-time. When CRC cells were co-cultured with CAFs, CAFs promoted CRC cell proliferation and invasion and reduced the sensitivity of cells to gefitinib through the exosomes secreted by CAFs. Furthermore, the cells that migrated out of the chip were collected, and EMT-related markers were determined by immunofluorescent and western blot assays. The results demonstrated that CAFs affected the response of CRC cells to gefitinib by inducing EMT, providing new ideas for further research on the resistance mechanism of gefitinib. This suggests that targeting CAFs or exosomes might be a new approach to enhance CRC sensitivity to gefitinib, and our system could be a novel platform for investigating the crosstalk between tumor cells and CAFs and understanding multiple biological changes of the tumor cells in the tumor microenvironment.


Asunto(s)
Antineoplásicos , Proliferación Celular , Técnicas de Cocultivo , Neoplasias Colorrectales , Gefitinib , Gefitinib/farmacología , Humanos , Técnicas de Cocultivo/instrumentación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Línea Celular Tumoral , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Exosomas/metabolismo , Exosomas/química , Exosomas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos
3.
Small ; 20(29): e2311299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366314

RESUMEN

Silicon (Si) anode has attracted broad attention because of its high theoretical specific capacity and low working potential. However, the severe volumetric changes of Si particles during the lithiation process cause expansion and contraction of the electrodes, which induces a repeatedly repair of solid electrolyte interphase, resulting in an excessive consuming of electrolyte and rapid capacity decay. Clearly known the deformation and stress changing at µÎµ resolution in the Si-based electrode during battery operation provides invaluable information for the battery research and development. Here, an in operando approach is developed to monitor the stress evolution of Si anode electrodes via optical fiber Bragg grating (FBG) sensors. By implanting FBG sensor at specific locations in the pouch cells with different Si anodes, the stress evolution of Si electrodes has been systematically investigated, and Δσ/areal capacity is proposed for stress assessment. The results indicate that the differences in stress evolution are nested in the morphological changes of Si particles and the evolution characteristics of electrode structures. The proposed technique provides a brand-new view for understanding the electrochemical mechanics of Si electrodes during battery operation.

4.
Angew Chem Int Ed Engl ; 63(10): e202318042, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38225208

RESUMEN

Ni-rich layered oxides are promising lithium-ion batteries (LIBs) cathode materials for their high reversible capacity, but they suffer from fast structural degradation during cycling. Here, we report the Ce/Gd incorporated single-crystalline LiNi0.83 Co0.07 Mn0.10 O2 (SC-NCM) cathode materials with significantly enhanced cycling stability. The Gd ions are adequately incorporated in SC-NCM while Ce ions are prone to aggregate in the outer surface, resulting in the formation of a high-entropy zone in the near-surface of SC-NCM, including a Gd doped LiCeO2 (LCGO) shell and Ce/Gd dopant-concentrated layer. The high-entropy zone can effectively inhibit the oxygen evolution and prevent the formation of oxygen vacancies. Meanwhile, it leads to a greatly improved H2-H3 phase transformation reversibility and mitigated stress/strain caused by Li-ion extraction/insertion during (de)lithiation process. The synergetic effects of reduced oxygen vacancies concentration and mitigated stress/strain can effectively prevent the in-plane migration of TM ions, lattice planar gliding as well as the formation of intragranular nanocracks. Consequently, Ce/Gd incorporated SC-NCM (SC-NCM@CG2) delivers a high initial discharge specific capacity of 219.7 mAh g-1 at 0.1 C and an excellent cycling stability with a capacity retention of 90.2 % after 100 cycles at 1.0 C.

5.
Small ; 19(48): e2303864, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525330

RESUMEN

Silicon (Si) is regarded as one of the most promising anode materials for high-performance lithium-ion batteries (LIBs). However, how to mitigate its poor intrinsic conductivity and the lithiation/delithiation-induced large volume change and thus structural degradation of Si electrodes without compromising their energy density is critical for the practical application of Si in LIBs. Herein, an integration strategy is proposed for preparing a compact micron-sized Si@G/CNF@NC composite with a tight binding and dual-encapsulated architecture that can endow it with superior electrical conductivity and deformation resistance, contributing to excellent cycling stability and good rate performance in thick electrode. At an ultrahigh mass loading of 10.8 mg cm-2 , the Si@G/CNF@NC electrode also presents a large initial areal capacity of 16.7 mA h cm-2 (volumetric capacity of 2197.7 mA h cm-3 ). When paired with LiNi0.95 Co0.02 Mn0.03 O2 , the pouch-type full battery displays a highly competitive gravimetric (volumetric) energy density of ≈459.1 Wh kg-1 (≈1235.4 Wh L-1 ).

6.
Anal Chem ; 95(2): 1251-1261, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36583760

RESUMEN

Liquid biopsy provides non-invasive and real-time detection for cancer diagnosis, but the lack of specific markers targeted to liquid biopsy components, such as circulating tumor cells (CTCs) and exosomes, has impeded its effective utilization in clinical settings. W3 is an aptamer, and its target has been previously demonstrated to be a predictor of colorectal cancer (CRC) metastasis. Herein, we developed a W3-based molecular beacon (MAB-W3-3G) to specifically detect CTCs and exosomes derived from CRC patients by modifying the W3 sequence and adding a fluorescent group FAM at the 5' end and a quencher group BHQ1 at the 3' end, resulting in a detectable green fluorescence only in the presence of the target. MAB-W3-3G retained features similar to those of the original W3, including high specificity and affinity for metastatic CRC cells, as well as excellent plasma stability. Notably, W3 target-positive CTCs were visualized, positive exosomes were quantified in CRC patients' whole blood without any sample pretreatment, and both detections could be finished in one step without any routine washing procedures. For CRC, the W3 target-positive CTC enumeration in metastasis was higher than that in non-metastasis (p < 0.01), and the quantitation of positive exosomes was correlated with CRC patients (p < 0.0001). Moreover, the MAB-W3-3G-based simultaneous detection of CTCs and exosomes was proven to have the potential for more precise clinical diagnosis. In conclusion, MAB-W3-3G could detect CTCs and exosomes in the blood samples of tumor patients with simple manipulation, rapid analysis, and high specificity, providing an effective liquid biopsy tool for the prediction of CRC.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Exosomas/patología , Neoplasias Colorrectales/patología , Oligonucleótidos , Biopsia Líquida , Biomarcadores de Tumor
7.
ACS Appl Mater Interfaces ; 14(46): 51954-51964, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36350880

RESUMEN

Silicon (Si) is regarded as one of the most promising anode materials for high-energy-density lithium (Li)-ion batteries (LIBs). However, Li insertion/extraction induced large volume change, which can lead to the fracture of the Si material itself and the delamination/pulverization of electrodes, is the major challenge for the practical application of Si-based anodes. Herein, a facile and scalable multilayer coating approach was proposed for the large-scale fabrication of functionally gradient Si/graphite (Si/Gr) composite electrodes to simultaneously mitigate the volume change-caused structural degradation and realize high capacity by regulating the spatial distributions of Si and Gr particles in the electrodes. Both our experimental characterizations and chemomechanical simulations indicated that, with a parabolic gradient (PG) distribution of Si through the thickness direction that the two Si-poor surface layers guarantee the major mechanical support and the middle Si-rich layer ensures the high capacity, the as-prepared PG-Si/Gr electrode can not only effectively improve the stability of the electrode structure but also efficiently enable high capacity and stable electrochemical reactions. Consequently, the PG-Si/Gr electrode with a mass loading of 3.15 mg cm-2 exhibited a reversible capacity of 579.2 mAh g-1 (1.82 mAh cm-2) after 200 cycles at 0.2C. Even with a mass loading of 8.45 mg cm-2, the PG-Si/Gr anodes still delivered a high reversible capacity of 4.04 mAh cm-2 after 100 cycles and maintained excellent cycling stability. Moreover, when paired with a commercial LiNi0.5Mn0.3Co0.2O2 (NCM532) cathode (9.56 mg cm-2), the PG-Si/Gr||NCM532 full cell revealed an initial reversible areal capacity of 1.64 mAh cm-2 and sustained a stable areal capacity of 0.94 mAh cm-2 at 0.2C after 100 cycles.

8.
Polymers (Basel) ; 14(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956554

RESUMEN

Early diagnosis of metastatic colorectal cancer (mCRC) is extremely critical to improve treatment and extend survival. W3 is an aptamer that can specifically bind to mCRC cells with high affinity. Graphene oxide (GO) is a two-dimensional graphitic carbon nanomaterial, which has widely used in constructing biosensors. In this study, we have developed a no-wash fluorescent aptasensor for one-step and sensitive detection of mCRC LoVo cells. It is based on fluorescence resonance energy transfer (FRET) between GO and the W3 aptamer labeled with 5-carboxyfluorescein (FAM). GO can quench the green fluorescence of the FAM-labeled W3 (FAM-W3). In the presence of the target cells, FAM-W3 preferentially binds the target cells and detaches from the surface of GO, leading to the fluorescence of FAM recovery. It was demonstrated that the fluorescence recovery increases linearly in a wide range of 0~107 cells/mL (R2 = 0.99). The GO-based FAM-labeled W3 aptasensor (denoted as FAM-W3-GO) not only specifically recognizes mCRC cell lines (LoVo and HCT116), but also sensitively differentiates the target cells from mixed cells, even in the presence of only 5% of the target cells. Furthermore, FAM-W3-GO was applied to detect LoVo cells in human whole blood, which showed good reproducibility with an RSD range of 1.49% to 1.80%. Therefore, FAM-W3-GO may have great potential for early diagnosis of mCRC. This strategy of GO-based fluorescent aptasensor provides a simple, one-step, and highly sensitive approach for the detection of mCRC cells.

9.
Front Psychol ; 13: 920782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795421

RESUMEN

This study explores how the academic experience of executives affects green innovation. Using data on executive academic experience from a sample of Chinese listed companies, we explore the relationship between executive academic experience and green innovation using a combination of qualitative and quantitative methods. We find that executive academic experience has a positive impact on green innovation. We also investigate the moderating effect of managerial discretionary factors organizational slack, nature of property rights, and degree of market competition. The results show that organizational slack positively moderates the relationship between senior managers' academic experience and green innovation, and this positive relationship is more significant in state-owned enterprises. The degree of market competition had a negative moderating effect on the positive relationship between academic experience of senior managers and green innovation. Improved general competence and concern for the environment are two possible mechanisms by which senior managers' academic experience affects green innovation. Our findings suggest that academic experience of senior managers is an important factor for green innovation in emerging market firms.

10.
Biosens Bioelectron ; 213: 114451, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700603

RESUMEN

Metastasis is a leading cause of cancer-related deaths. Hence, the discovery of more reliable metastasis-related biomarkers is crucial to improve the survival rate of cancer patients. W3 is an aptamer previously produced by the subtractive cell-SELEX using metastatic colorectal cancer cells as target cells and non-metastatic cells as negative cells. In this study, we aimed to evaluate whether the target molecule of W3 can potentially act as a metastatic biomarker. First, we obtained two cell subpopulations with different expression levels of the target molecule by W3-based cell sorting. Subsequently, we demonstrated that W3high cells have a higher metastatic potential than W3low cells both in vitro and in vivo. Further, immunohistochemical analysis revealed that W3 target expression is positively associated with metastasis and poor prognosis of CRC patients. Using mass spectrometry (MS) combined with pull-down, we identified that Ephrin type-A receptor 2 (EphA2) is the target of W3. EphA2's potential as a metastatic predictor was demonstrated by capturing W3-positive circulating tumor cells from CRC patients using a W3 probe. Based on these results, we put forward a stratagem for cell-SELEX-based biomarker discovery: selecting an aptamer through subtractive cell-SELEX towards the phenotype of interest; evaluating the functional phenotype of the target molecule by aptamer-based target cell sorting and analysis of clinical samples; and identifying the aptamer's target molecule using MS and aptamer-based target enrichment. This stratagem not only shortens the time for the clinical application of aptamers but also enables a more targeted and efficient discovery of biomarkers.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Neoplasias Colorrectales , Aptámeros de Nucleótidos/química , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Humanos , Técnica SELEX de Producción de Aptámeros/métodos
11.
Analyst ; 147(1): 187-195, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34874026

RESUMEN

Malignant melanoma is regarded as the most aggressive form of skin cancer, and is responsible for most death caused by skin cancer. BRAF mutations occur in approximately 40-50% of melanomas, with V600E being the most common mutation. Testing for BRAF mutations and targeted therapy have markedly improved long-term survival for patients with BRAF-mutated melanoma. Here, we report two aptamers, CH1 and CH5 generated by Cell-SELEX, against BRAF V600E-mutated human melanoma cells A375. The two aptamers exhibited high affinity to target cells with low dissociation constants (Kd) in the nanomolar range. Furthermore, the binding of two aptamers to target cells was independent of incubation temperature, and their molecular targets were demonstrated to be membrane proteins on the cell surface. We also demonstrated that aptamer CH1 was able to bind to metastatic colorectal cancer cells harboring BRAF V600E mutation, indicating a relationship between aptamer CH1 and BRAF V600E-related metastatic cancer. Owing to the structure stability and high selectivity to BRAF V600E-mutated targeting cells, aptamer CH1 holds great potential as a molecular probe for the detection of BRAF V600E-mutated metastatic melanoma.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , ADN de Cadena Simple , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas de la Membrana , Oligonucleótidos , Proteínas Proto-Oncogénicas B-raf/genética
12.
Technol Cancer Res Treat ; 19: 1533033820980074, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33308020

RESUMEN

OBJECTIVE: We aimed to identify the expression of Sal-like 4 (SALL4) in breast cancer tissues and to explore the role of this gene in the carcinogenesis of breast cancer cells. METHODS: A total of 62 paired breast cancer and noncancerous tissue samples were obtained from patients with breast cancer. SALL4 expression patterns and their association with clinicopathological characteristics were investigated by qRT-PCR, western blotting, and immunochemistry in breast cancer tissues. After the knockdown of SALL4 by short hairpin RNAs (shRNAs), the proliferative, invasive, and apoptotic abilities of MDA-MB-435 and MDA-MB-468 cells (breast cancer cell lines) were measured by colony formation and CCK-8 assays, wound healing and transwell assays, and flow cytometry, respectively. RESULTS: SALL4 expression was higher in breast cancer tissues than that in the paired noncancerous tissues, and increased SALL4 expression in tumor tissues was closely related to tumor size and lymphatic metastasis. Furthermore, functional experiments revealed that SALL4 knockdown inhibited the cell proliferation, induced cell cycle arrest in G0/G1phase and apoptosis, and decreased the ability of migration and invasion in breast cancer cells. Additionally, our study first demonstrated that SALL4 played a critical role in modulating the tumorigenicity of breast cancer cells via the WNT/ß-catenin signaling pathway. CONCLUSIONS: Our results suggest that the expression of SALL4 is upregulated in breast cancer, and this upregulation is involved in the regulation of cell growth, invasion, and apoptosis. Hence, SALL4 may be a promising target for diagnosis and therapy in patients with breast cancer.


Asunto(s)
Apoptosis/genética , Neoplasias de la Mama/genética , Factores de Transcripción/genética , Adulto , Anciano , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Femenino , Expresión Génica , Silenciador del Gen , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Interferencia de ARN , ARN Interferente Pequeño/genética
13.
Anal Bioanal Chem ; 412(30): 8451, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32968853

RESUMEN

The authors would like to call the reader's attention to the fact that unfortunately the name of Jianzhang Pan was missing as co-author of this contribution.

14.
Anal Bioanal Chem ; 412(13): 3037-3049, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32249344

RESUMEN

The efficacy of targeted therapy is associated with multi-gene mutation status. Carrying out effective multi-genotyping analysis in combination has been a challenge in clinical settings. We therefore developed a droplet-based capillary electrophoresis (CE) system coupled with PCR-restriction fragment length polymorphism (PCR-RFLP) technology to detect multi-gene mutations from a small volume of samples. A 16 × 16 200-nL droplet array for sample encapsulation was constructed on a glass chip. The electrophoresis system consisted of a tapered vertical capillary filled with polyvinylpyrrolidone, a laser-induced fluorescence detector, and a high voltage power supply. Notably, a droplet-based electrokinetic sample introduction method and a "∩" shape capillary were developed to facilitate consecutive droplet sampling using a home-made automatic control module. The DL2000 DNA marker was consecutively separated, achieving high migration time and plate number reproducibility. The system was further applied to detect PCR-RFLP products. For colorectal cancer (CRC) cell lines, KRAS, BRAF, and PIK3CA were genotyped with a sensitivity of 0.25%. For CRC patient specimens, 30 samples were consecutively and automatically multi-genotyped without inter-sample contamination, with a lowest mutation frequency of 0.37%. For the first time, we developed a droplet-based CE system for consecutive DNA analysis with low sample consumption. This automated CE system could be further developed to integrate the full process of gene mutation detection, serving as a more effective platform for individualised therapy.


Asunto(s)
Neoplasias Colorrectales/genética , Electroforesis Capilar/métodos , Mutación , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/patología , Genes ras , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Reproducibilidad de los Resultados
15.
Talanta ; 199: 634-642, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952308

RESUMEN

Gastric cancer (GC) is associated with high morbidity and mortality rates worldwide. Poorly differentiated GC predicts a poor prognosis and is related to patients' response to chemotherapy and targeted therapy. Therefore, it is very important to accurately evaluate the tumour differentiation status for the treatment of poorly differentiated GC. To develop a molecular probe to analyse poorly differentiated GC, we selected aptamers against poorly differentiated GC by subtractive Cell-SELEX using the poorly differentiated GC cell line BGC-823 as the target and the moderately differentiated GC cell line SGC-7901 as the negative control. After 15 rounds of selection, aptamer PDGC21 exhibited the highest affinity, and the Kd value of the truncated aptamer PDGC21-T was 35.2 ±â€¯1.1 nM. Aptamer PDGC21-T not only specifically bound to the target cells but also bound to other poorly differentiated GC cells. When combined with fluorescent nanoparticle quantum dots (QDs), the PDGC21-T-QD probe could distinguish poorly differentiated GC cells in mixed culture cells and clinical specimens. Furthermore, in a tissue microarray containing 15 cases from patients, there was a higher positive rate in GC tissues compared with adjacent normal tissues; in poorly differentiated tissues, in particular, the fluorescence signal was significantly higher than that in well/moderately differentiated tissues. Therefore, aptamer PDGC21-T holds great potential for use as a molecular imaging probe for the detection of poorly differentiated GC, which is of great significance for diagnosis and treatment.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN de Cadena Simple/química , Técnica SELEX de Producción de Aptámeros , Neoplasias Gástricas/diagnóstico por imagen , Diferenciación Celular , Citometría de Flujo , Humanos , Microscopía Fluorescente , Neoplasias Gástricas/patología , Análisis de Matrices Tisulares , Células Tumorales Cultivadas
16.
Mol Ther Nucleic Acids ; 12: 707-717, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30098503

RESUMEN

Circulating tumor cells (CTCs) have the potential to predict metastasis, and the capture of CTCs based on their surface markers is mostly applied for CTC detection. Considering that the CTCs with a metastatic phenotype preferably form a metastatic focus and that aptamers have the ability to bind targets with high specificity and affinity, we selected aptamers directed toward metastatic cells by subtractive Cell-SELEX technology using highly metastatic MDA-MB-231 cells as the target cell and low-metastatic MCF-7 cells as the negative cell for the capture of metastatic CTCs. Affinity and selectivity assays showed that aptamer M3 had the highest affinity, with a KD of 45.6 ± 1.2 nM, and had good specificity against several other types of metastatic cancer cells. Based on these findings, we developed an M3-based capture system for CTC enrichment, which has the capability to specifically capture the metastatic cells MDA-MB-231 mixed with non-metastatic MCF-7 cells and CTCs derived from the peripheral blood from metastatic breast cancer patients. A further comparative analysis with the anti-EpCAM probe showed that M3 probe captured epithelial feature-deletion metastatic cells. We developed an aptamer-based CTC capture system through the selection of aptamers by taking whole metastatic cells, not known molecules, as targets, which provided a new insight into CTC capture and Cell-SELEX application.

17.
Anal Chem ; 90(5): 3253-3261, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29431425

RESUMEN

Angiogenesis is critical for tumor progression and metastasis, and it progresses through orchestral multicellular interactions. Thus, there is urgent demand for high-throughput tumor angiogenesis assays for concurrent examination of multiple factors. For investigating tumor angiogenesis, we developed a microfluidic droplet array-based cell-coculture system comprising a two-layer polydimethylsiloxane chip featuring 6 × 9 paired-well arrays and an automated droplet-manipulation device. In each droplet-pair unit, tumor cells were cultured in 3D in one droplet by mixing cell suspensions with Matrigel, and in the other droplet, human umbilical vein endothelial cells (HUVECs) were cultured in 2D. Droplets were fused by a newly developed fusion method, and tumor angiogenesis was assayed by coculturing tumor cells and HUVECs in the fused droplet units. The 3D-cultured tumor cells formed aggregates harboring a hypoxic center-as observed in vivo-and secreted more vascular endothelial growth factor (VEGF) and more strongly induced HUVEC tubule formation than did 2D-cultured tumor cells. Our single array supported 54 assays in parallel. The angiogenic potentials of distinct tumor cells and their differential responses to antiangiogenesis agent, Fingolimod, could be investigated without mutual interference in a single array. Our droplet-based assay is convenient to evaluate multicellular interaction in high throughput in the context of tumor sprouting angiogenesis, and we envision that the assay can be extensively implementable for studying other cell-cell interactions.


Asunto(s)
Comunicación Celular/fisiología , Técnicas de Cocultivo/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Neovascularización Patológica/fisiopatología , Inhibidores de la Angiogénesis/farmacología , Animales , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Endoteliales , Clorhidrato de Fingolimod/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microfluídica/métodos , Neovascularización Patológica/tratamiento farmacológico , Ratas
18.
Artículo en Inglés | MEDLINE | ID: mdl-28769987

RESUMEN

Natural products are becoming increasingly important in chemoprevention and for cancer therapy. Silene viscidula (S. viscidula), a traditional Chinese herb, has long been used as an anti-inflammatory and neuroleptic agent. However, the anticancer activity of S. viscidula has remained unclear. In this study, 16 compounds were extracted from S. viscidula. Among those compounds, sinocrassulosides VI/VII, an inseparable isomer mixture, possess the strongest inhibitory activity on HeLa cells with the IC50 value of 2.37 µM. Mechanism studies found that sinocrassulosides VI/VII downregulated the expression of cyclin D1 and decreased retinoblastoma (Rb) phosphorylation, which arrested HeLa cells in the G1 phase. Also, sinocrassulosides VI/VII could induce senescence via the upregulation of p16 and a significant increase of ß-galactosidase (ß-gal) staining. Our results suggest that sinocrassulosides VI/VII may be a new therapeutic potential agent for cervical cancer. In addition, we explored the structure-activity relationships of three groups of the configurational isomer with similar chemical structure from S. viscidula. We first demonstrated that the length of the ester chains linked to the carboxyl group of the glucuronic acid residue could affect the potent cytotoxicity. This finding will open new avenues for developing effective anticancer compounds by modifying the components derived from plants in nature.

19.
Sci Rep ; 6: 38376, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917905

RESUMEN

Metastasis is an important hallmark of malignant tumors. In this study, we developed a microfluidic system to screen highly metastatic sublines via differential resolution of cell invasiveness. The system was composed of a PDMS-glass device connected with a syringe pump and a Petri dish. To facilitate the selection process, a long-term cell invasion driving force based on a chemotactic factor gradient was created using the Petri dish-based liquid supply pattern, and the invasive cells were collected for round-by-round selection via an open region in the chip. Using the system, we established an SGC-7901/B2 subline from the human gastric cancer SGC-7901 cell line by only two rounds of selection. In vitro assays showed that the SGC-7901/B2 cells were superior to the parental cells in proliferation and invasiveness. Furthermore, an in vivo tumorigenicity assay demonstrated that compared with the parental cells, the subline had stronger spontaneous metastatic and proliferative capability, which led to a shorter survival duration. Additionally, the protein expression differences including E-cadherin and Smad3 between the subline and parental cells were revealed. In conclusion, this microfluidic system is a highly effective tool for selecting highly metastatic sublines, and SGC-7901/B2 cells could serve as a potential model for tumor metastasis research.


Asunto(s)
Técnicas de Cultivo de Célula , Efecto Fundador , Regulación Neoplásica de la Expresión Génica , Dispositivos Laboratorio en un Chip , Neoplasias Gástricas/genética , Animales , Antígenos CD , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Transducción de Señal , Proteína smad3/genética , Proteína smad3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Análisis de Supervivencia
20.
BMC Cancer ; 16: 454, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27405731

RESUMEN

BACKGROUND: The PIK3CA (H1047R) mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA (H1047R) mutation in high effectiveness. METHODS: A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA (H1047R) was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. RESULTS: The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA (H1047R) mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA (H1047R) mutation and the patients' age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. CONCLUSIONS: We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA (H1047R) mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Edad , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Análisis Mutacional de ADN/métodos , Femenino , Células HT29 , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA