Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Int Immunopharmacol ; 140: 112784, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39083928

RESUMEN

Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.

2.
Anal Chem ; 96(28): 11374-11382, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38949233

RESUMEN

Plastic pollution represents a critical threat to soil ecosystems and even humans, as plastics can serve as a habitat for breeding and refuging pathogenic microorganisms against stresses. However, evaluating the health risk of plastispheres is difficult due to the lack of risk factors and quantification model. Here, DNA sequencing, single-cell Raman-D2O labeling, and transformation assay were used to quantify key risk factors of plastisphere, including pathogen abundance, phenotypic resistance to various stresses (antibiotic and pesticide), and ability to acquire antibiotic resistance genes. A Bayesian network model was newly introduced to integrate these three factors and infer their causal relationships. Using this model, the risk of pathogen in the plastisphere is found to be nearly 3 magnitudes higher than that in free-living state. Furthermore, this model exhibits robustness for risk prediction, even in the absence of one factor. Our framework offers a novel and practical approach to assessing the health risk of plastispheres, contributing to the management of plastic-related threats to human health.


Asunto(s)
Teorema de Bayes , Bacterias/genética , Bacterias/aislamiento & purificación , Fenotipo , Microbiología del Suelo , Humanos , Antibacterianos/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38848171

RESUMEN

OBJECTIVE: This study aimed to investigate the feasibility of using dual-layer spectral CT multi-parameter feature to predict microvascular invasion of hepatocellular carcinoma. METHODS: This retrospective study enrolled 50 HCC patients who underwent multiphase contrast-enhanced spectral CT studies preoperatively. Combined clinical data, radiological features with spectral CT quantitative parameter were constructed to predict MVI. ROC was applied to identify potential predictors of MVI. The CT values obtained by simulating the conventional CT scans with 70 keV images were compared with those obtained with 40 keV images. RESULTS: 50 hepatocellular carcinomas were detected with 30 lesions (Group A) with microvascular invasion and 20 (Group B) without. There were significant differences in AFP,tumer size, IC, NIC,slope and effective atomic number in AP and ICrr in VP between Group A ((1000(10.875,1000),4.360±0.3105, 1.7750 (1.5350,1.8825) mg/ml, 0.1785 (0.1621,0.2124), 2.0362±0.2108,8.0960±0.1043,0.2830±0.0777) and Group B (4.750(3.325,20.425),3.190±0.2979,1.4700 (1.4500,1.5775) mg/ml, 0.1441 (0.1373,0.1490),1.8601±0.1595, 7.8105±0.7830 and 0.2228±0.0612) (all p < 0.05). Using 0.1586 as the threshold for NIC, one could obtain an area-under-curve (AUC) of 0.875 in ROC to differentiate between tumours with and without microvascular invasion. AUC was 0.625 with CT value at 70 keV and improved to 0.843 at 40 keV. CONCLUSION: Dual-layer spectral CT provides additional quantitative parameters than conventional CT to enhance the differentiation between hepatocellular carcinoma with and without microvascular invasion. Especially, the normalized iodine concentration (NIC) in arterial phase has the greatest potential application value in determining whether microvascular invasion exists, and can offer an important reference for clinical treatment plan and prognosis assessment.

5.
Int Immunopharmacol ; 136: 112338, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850787

RESUMEN

Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.


Asunto(s)
Autofagia , Fibrosis , Nicotina , Animales , Autofagia/efectos de los fármacos , Ratas , Masculino , Ratas Endogámicas SHR , Transducción de Señal/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Células Cultivadas , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Ratas Sprague-Dawley
6.
Environ Sci Technol ; 58(24): 10796-10805, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38853591

RESUMEN

Xylem serves as a conduit linking soil to the aboveground plant parts and facilitating the upward movement of microbes into leaves and fruits. Despite this potential, the composition of the xylem microbiome and its associated risks, including antibiotic resistance, are understudied. Here, we cultivated tomatoes and analyzed their xylem sap to assess the microbiome and antibiotic resistance profiles following treatment with sewage sludge. Our findings show that xylem microbes primarily originate from soil, albeit with reduced diversity in comparison to those of their soil microbiomes. Using single-cell Raman spectroscopy coupled with D2O labeling, we detected significantly higher metabolic activity in xylem microbes than in rhizosphere soil, with 87% of xylem microbes active compared to just 36% in the soil. Additionally, xylem was pinpointed as a reservoir for antibiotic resistance genes (ARGs), with their abundance being 2.4-6.9 times higher than in rhizosphere soil. Sludge addition dramatically increased the abundance of ARGs in xylem and also increased their mobility and host pathogenicity. Xylem represents a distinct ecological niche for microbes and is a significant reservoir for ARGs. These results could be used to manage the resistome in crops and improve food safety.


Asunto(s)
Farmacorresistencia Microbiana , Aguas del Alcantarillado , Solanum lycopersicum , Xilema , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Aguas del Alcantarillado/microbiología , Farmacorresistencia Microbiana/genética , Microbiología del Suelo , Rizosfera , Microbiota
7.
Food Chem ; 457: 140046, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901342

RESUMEN

The extraction of active ingredients from traditional Chinese medicine has received considerable attentions. In this study, 16 kinds of natural deep eutectic solvent (NADES) with ultrasonic were selected to extract saponins from purple yam root and the extraction mechanism was investigated. The results showed that chloride/acrylic acid (1:2; n/n) had the highest extraction yield for saponins. The optimal extraction process parameters were 24% water content, 20 mL/g liquid-solid ratio, and ultrasonic extraction for 85 min (81 °C, 600 W). The extraction rate (ER) of purple yam saponins was 0.935%, close to the fitted result of 96.5 mg/g. Molecular dynamics simulations and FT-IR results showed that the NADES may extract the saponin constituents from purple yam through hydrogen bonding. Compared with traditional extraction methods and molecularly imprinted polymer methods, NADES has a higher ER and lower cost (1.53 $/g), which provides a reference for subsequent industrial quantitative production.


Asunto(s)
Disolventes Eutécticos Profundos , Dioscorea , Saponinas , Saponinas/química , Saponinas/aislamiento & purificación , Dioscorea/química , Disolventes Eutécticos Profundos/química , Ultrasonido , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Permeabilidad , Fraccionamiento Químico/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Raíces de Plantas/química
8.
mSystems ; 9(7): e0060024, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888356

RESUMEN

Locusta migratoria is an important phytophagous pest, and its gut microbial communities play an important role in cellulose degradation. In this study, the gut microbial and cellulose digestibility dynamics of Locusta migratoria were jointly analyzed using high-throughput sequencing and anthrone colorimetry. The results showed that the gut microbial diversity and cellulose digestibility across life stages were dynamically changing. The species richness of gut bacteria was significantly higher in eggs than in larvae and imago, the species richness and cellulose digestibility of gut bacteria were significantly higher in early larvae (first and second instars) than in late larvae (third to fifth instars), and the diversity of gut bacteria and cellulose digestibility were significantly higher in imago than in late larvae. There is a correlation between the dynamics of gut bacterial communities and cellulose digestibility. Enterobacter, Lactococcus, and Pseudomonas are the most abundant genera throughout all life stages. Six strains of highly efficient cellulolytic bacteria were screened, which were dominant gut bacteria. Carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) experiments revealed that Pseudomonas had the highest cellulase enzyme activity. This study provides a new way for the screening of cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors. IMPORTANCE: Cellulose is the most abundant and cheapest renewable resource in nature, but its degradation is difficult, so finding efficient cellulose degradation methods is an urgent challenge. Locusta migratoria is a large group of agricultural pests, and the large number of microorganisms that inhabit their intestinal tracts play an important role in cellulose degradation. We analyzed the dynamics of Locusta migratoria gut microbial communities and cellulose digestibility using a combination of high-throughput sequencing technology and anthrone colorimetry. The results revealed that the gut microbial diversity and cellulose digestibility were dynamically changed at different life stages. In addition, we explored the intestinal bacterial community of Locusta migratoria across life stages and its correlation with cellulose digestibility. The dominant bacterial genera at different life stages of Locusta migratoria were uncovered and their carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) were determined. This study provides a new avenue for screening cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors.


Asunto(s)
Bacterias , Celulosa , Microbioma Gastrointestinal , Locusta migratoria , Animales , Celulosa/metabolismo , Microbioma Gastrointestinal/fisiología , Locusta migratoria/microbiología , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Larva/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Digestión/fisiología
9.
Cardiol Rev ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38780252

RESUMEN

Acute ST-segment elevation myocardial infarction (STEMI) is a formidable challenge in cardiovascular medicine, demanding advanced reperfusion strategies such as emergency percutaneous coronary intervention. While successful revascularization is pivotal, the persistent "no-reflow" phenomenon remains a clinical hurdle, often intertwined with microvascular dysfunction. Within this intricate scenario, the emergence of intramyocardial hemorrhage (IMH) has garnered attention as a significant contributor. This review offers a detailed exploration of the multifaceted relationship between IMH and the "no-reflow" phenomenon, delving into the mechanisms governing IMH occurrence, state-of-the-art diagnostic modalities, predictive factors, clinical implications, and the evolving landscape of preventive and therapeutic strategies. The nuanced examination aims to deepen our comprehension of IMH, providing a foundation for the identification of innovative therapeutic avenues and enhanced clinical outcomes for STEMI patients.

10.
BMC Med ; 22(1): 206, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769523

RESUMEN

BACKGROUND: Numerous studies have been conducted to investigate the relationship between ABO and Rhesus (Rh) blood groups and various health outcomes. However, a comprehensive evaluation of the robustness of these associations is still lacking. METHODS: We searched PubMed, Web of Science, Embase, Scopus, Cochrane, and several regional databases from their inception until Feb 16, 2024, with the aim of identifying systematic reviews with meta-analyses of observational studies exploring associations between ABO and Rh blood groups and diverse health outcomes. For each association, we calculated the summary effect sizes, corresponding 95% confidence intervals, 95% prediction interval, heterogeneity, small-study effect, and evaluation of excess significance bias. The evidence was evaluated on a grading scale that ranged from convincing (Class I) to weak (Class IV). We assessed the certainty of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation criteria (GRADE). We also evaluated the methodological quality of included studies using the A Measurement Tool to Assess Systematic Reviews (AMSTAR). AMSTAR contains 11 items, which were scored as high (8-11), moderate (4-7), and low (0-3) quality. We have gotten the registration for protocol on the PROSPERO database (CRD42023409547). RESULTS: The current umbrella review included 51 systematic reviews with meta-analysis articles with 270 associations. We re-calculated each association and found only one convincing evidence (Class I) for an association between blood group B and type 2 diabetes mellitus risk compared with the non-B blood group. It had a summary odds ratio of 1.28 (95% confidence interval: 1.17, 1.40), was supported by 6870 cases with small heterogeneity (I2 = 13%) and 95% prediction intervals excluding the null value, and without hints of small-study effects (P for Egger's test > 0.10, but the largest study effect was not more conservative than the summary effect size) or excess of significance (P < 0.10, but the value of observed less than expected). And the article was demonstrated with high methodological quality using AMSTAR (score = 9). According to AMSTAR, 18, 32, and 11 studies were categorized as high, moderate, and low quality, respectively. Nine statistically significant associations reached moderate quality based on GRADE. CONCLUSIONS: Our findings suggest a potential relationship between ABO and Rh blood groups and adverse health outcomes. Particularly the association between blood group B and type 2 diabetes mellitus risk.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Metaanálisis como Asunto , Estudios Observacionales como Asunto , Sistema del Grupo Sanguíneo Rh-Hr , Revisiones Sistemáticas como Asunto , Humanos , Revisiones Sistemáticas como Asunto/métodos , Estudios Observacionales como Asunto/métodos
11.
Zhongguo Zhong Yao Za Zhi ; 49(3): 779-788, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621882

RESUMEN

This study aims to investigate the essential oil(EOL) of Cinnamomum camphora regarding its anti-depression effect and mechanism in regulating inflammatory cytokines and the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway. A mouse model of depression was established by intraperitoneal injection of lipopolysaccharide(LPS). Open field, elevated plus maze, and forced swimming tests were carried out to examine mouse behaviors. Western blot and qRT-PCR were employed to determine the expression of proteins and genes in the Nrf2/HO-1 pathway in the hippocampus. The levels of tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1ß in the serum were measured by enzyme-linked immunosorbent assay(ELISA). The changes of apoptosis in mouse brain were detected by Tunel staining. Compared with the blank control group, the model group showed shortened distance travelled and time spent in the central zone and reduced number of entries in the central zone in the open field test. In the elevated plus maze test, the model group showed reduced open arm time(OT%) and open arm entries(OE%). In the force swimming test, the model group showed extended duration of immobility compared with the blank control group. Compared with the model group, the treatment with EOL significantly increased the distance travelled and time spent in the central zone and increased the number of entries in the central zone in the open field test. In addition, EOL significantly increased the OT% and OE% in the elevated plus maze and shor-tened the immobility duration in the forced swimming test. The model group showed lower expression levels of Nrf2 and HO-1 and hig-her levels of TNF-α, IL-6, and IL-1ß than the blank control group. Compared with the model group, the treatment with EOL up-regulated the expression levels of Nrf2 and HO-1 and lowered the levels of TNF-α, IL-6, and IL-1ß. The Tunel staining results showed that the apoptosis rate in the brain tissue of mice decreased significantly after the treatment with EOL. To sum up, EOL can mitigate the depression-like behaviors of mice by up-regulating the expression of Nrf2 and HO-1 and preventing hippocampal inflammatory damage. The findings provide empirical support for the application of EOL and aromatherapy in the treatment of depression.


Asunto(s)
Cinnamomum camphora , Aceites Volátiles , Femenino , Ratones , Animales , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa , Interleucina-6 , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Depresión/tratamiento farmacológico , Aceites Volátiles/farmacología , Lipopolisacáridos/farmacología
12.
Artículo en Inglés | MEDLINE | ID: mdl-38432103

RESUMEN

Conopomorpha sinensis Bradley is the most detrimental pest to litchi and longan in China. Adult eclosion, locomotion, mating and oviposition of C. sinensis usually occur at night, regulated by a circadian rhythm. Nevertheless, our understanding of the linkages between adult circadian rhythms and clock genes remains inadequate. To address this gap, transcriptomic analysis was conducted on female and male heads (including antennae) of C. sinensis using the Illumina HiSeq 6000 platform to identify major circadian clock-related genes. The annotated sequences were analyzed by BLASTx, and candidate clock genes were classified based on conservation, predicted domain architectures, and phylogenetic analysis. The analysis revealed a higher conservation of these genes among the compared moths. Further, the expression profile analysis showed a significant spatiotemporal and circadian rhythmic accumulation of some clock genes during development. The candidate clock genes were predominantly expressed in the head, highlighting their crucial function in circadian rhythm regulation. Moreover, CsinPer, CsinTim1, and CsinCry1 displayed similar dynamic expressions with a peak expression level in the 4th age adults, suggesting their involvement in regulation of courtship and mating behaviors. The CsinPer and CsinTim1 mRNA oscillated strongly with a similar phase, containing a peak expression just before the female mating peak. This work will greatly contribute to understanding the circadian clock system of C. sinensis and provide valuable information for further studies of the molecular mechanisms involved in rhythmicity in fruit-boring pests.


Asunto(s)
Relojes Circadianos , Transcriptoma , Animales , Relojes Circadianos/genética , Femenino , Proteínas de Insectos/genética , Masculino , Cabeza , Mariposas Nocturnas/genética , Mariposas Nocturnas/fisiología , Filogenia , Ritmo Circadiano/genética , Perfilación de la Expresión Génica
13.
ACS Cent Sci ; 10(2): 358-366, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38435533

RESUMEN

Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (Kcat/Km) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.

14.
Orphanet J Rare Dis ; 19(1): 126, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504242

RESUMEN

OBJECTIVE: Idiopathic infantile hypercalcemia (IIH) is a rare disorder of PTH-independent hypercalcemia. CYP24A1 and SLC34A1 gene mutations cause two forms of hereditary IIH. In this study, the clinical manifestations and molecular aspects of six new Chinese patients were investigated. METHODS: The clinical manifestations and laboratory study of six patients with idiopathic infantile hypercalcemia were analyzed retrospectively. RESULTS: Five of the patients were diagnosed with hypercalcemia, hypercalciuria, and bilateral medullary nephrocalcinosis. Their clinical symptoms and biochemical abnormalities improved after treatment. One patient presented at age 11 years old with arterial hypertension, hypercalciuria and nephrocalcinosis, but normal serum calcium. Gene analysis showed that two patients had compound heterozygous mutations of CYP24A1, one patient had a monoallelic CYP24A1 variant, and three patients had a monoallelic SLC34A1 variant. Four novel CYP24A1 variants (c.116G > C, c.287T > A, c.476G > A and c.1349T > C) and three novel SLC34A1 variants (c.1322 A > G, c.1697_1698insT and c.1726T > C) were found in these patients. CONCLUSIONS: A monoallelic variant of CYP24A1 or SLC34A1 gene contributes to symptomatic hypercalcemia, hypercalciuria and nephrocalcinosis. Manifestations of IIH vary with onset age. Hypercalcemia may not necessarily present after infancy and IIH should be considered in patients with nephrolithiasis either in older children or adults.


Asunto(s)
Hipercalcemia , Enfermedades del Recién Nacido , Errores Innatos del Metabolismo , Nefrocalcinosis , Niño , Humanos , Hipercalcemia/genética , Hipercalciuria/genética , Mutación/genética , Nefrocalcinosis/genética , Estudios Retrospectivos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo
15.
J Colloid Interface Sci ; 661: 700-708, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38320406

RESUMEN

The incorporation of high-valence transition metal atoms into FeNi (oxy)hydroxides may be a promising strategy to regulate the intrinsic electronic states, thereby reducing the thermodynamic barrier and accelerating oxygen evolution reaction (OER). Here, a high-valence Mo atoms doping route is proposed by an efficient self-reconstruction strategy to prepare MoFeNi (oxy)hydroxides for efficient alkaline OER. By using borides (MoNiB) as sacrificial template and Mo source, FeNi (oxy)hydroxides nanoflakes embedded with high-valence Mo atoms (MoFeNi) is successfully synthesized, which can modulate the electron coordination to improve the intrinsic catalytic activity. Remarkably, the obtained MoFeNi exhibits extremely low overpotential (η100 = 252 mV and η500 = 288 mV) and small Tafel slope (18.35 mV dec-1). The robust catalyst can run stably for hours at 500 mA cm-2. Characterization results and theoretical calculations confirmed that the addition of high-valence Mo effectively modulated the intrinsic electronic structure of metal sites and optimized the adsorption/desorption energy of the intermediates, accelerating OER reactions kinetics. By coupling MoFeNi anode with Pt/C cathode, anion exchange membrane (AEM) electrolyser can operate stably at 500 mA cm-2 with about less than 2.2 V. This research introduces a novel approach to develop ideal electrocatalysts through the incorporation of high-valence molybdenum species.

16.
Bioorg Chem ; 143: 107093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185012

RESUMEN

Fungi are microorganisms with biosynthetic potential that are capable of producing a wide range of chemically diverse and biologically interesting small molecules. Chemical epigenetic manipulation has been increasingly explored as a simple and powerful tool to induce the production of additional microbial secondary metabolites in fungi. This review focuses on chemical epigenetic manipulation in fungi and summarizes 379 epigenetic manipulation products discovered from 2008 to 2022 to promote the discovery of their medicinal value.


Asunto(s)
Epigénesis Genética , Hongos , Hongos/química , Metabolismo Secundario
17.
Food Chem ; 442: 138434, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241987

RESUMEN

Saponin is an essential natural compound in purple yams with high nutritional and medicinal value. In this work, a multitemplate molecule-imprinted polymer (MMIP) was synthesized with dioscin, protodioscin, and diosgenin templates. The MMIPs were characterized with scanning electron microscopy, thermogravimetric analysis, Brunauer-Emmett-Teller (BET) adsorption, and Fourier transform infrared spectroscopy. The efficacy of the MMIPs was assessed with static, dynamic, selective adsorption, desorption, and reusability experiments. The three saponins were selectively extracted and determined by MMIP-high-performance liquid chromatography. The polymer morphology was regular and spherical. The amount of the MMIP adsorbed was 74.825 mg/g, and the imprinting factor was 2.1. The MMIP adsorbed the three saponins from purple yam extract, with recovery rates of 95.5-103.43 % and desorption rates of 85 %-98 %. In addition, the MMIPs were reused at least six times. These results demonstrated that the MMIPs efficiently and selectively extracted dioscin, protodioscin, and diosgenin from food matrices at high rates.


Asunto(s)
Dioscorea , Diosgenina/análogos & derivados , Impresión Molecular , Saponinas , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Polímeros/química , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Extracción en Fase Sólida/métodos
18.
ESC Heart Fail ; 11(2): 1009-1021, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234046

RESUMEN

AIMS: Myocardial ischaemia-reperfusion injury (MIRI) contributes to serious myocardial injury and even death. Long non-coding RNAs (lncRNAs) have been reported to play pivotal roles in the occurrence and development of MIRI. Here, the detailed molecular mechanism of lncRNA SNHG1 in MIRI was explored. METHODS AND RESULTS: A cell model of MIRI was established through hypoxia/reoxygenation (H/R) stimulation. Cell viability and pyroptosis were evaluated utilizing MTT, PI staining, and flow cytometry. Interleukin (IL)-1ß and IL-18 secretion levels were examined by ELISA. The gene and protein expression were detected by RT-qPCR and western blot, respectively. Dual luciferase reporter gene, RIP and ChIP assays were performed to analyse the molecular interactions. The results showed that lncRNA SNHG1 overexpression alleviated H/R-induced HL-1 cell pyroptosis (all P < 0.05). LncRNA SNHG1 promoted KLF4 expression by sponging miR-137-3p. miR-137-3p silencing alleviated H/R-induced pyroptosis in HL-1 cells (all P < 0.05), which was abolished by KLF4 knockdown (all P < 0.05). KLF4 activated the AKT pathway by transcriptionally activating TRPV1 in HL-1 cells (all P < 0.05). TRPV1 knockdown reversed the alleviation of SNHG1 upregulation on H/R-induced pyroptosis in HL-1 cells (all P < 0.05). CONCLUSIONS: These results showed that lncRNA SNHG1 assuaged cardiomyocyte pyroptosis during MIRI progression by regulating the KLF4/TRPV1/AKT axis through sponging miR-137-3p. Our findings may provide novel therapeutic targets for MIRI.


Asunto(s)
MicroARNs , Daño por Reperfusión Miocárdica , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Daño por Reperfusión Miocárdica/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , MicroARNs/genética , Miocardio/metabolismo , Hipoxia , Canales Catiónicos TRPV
19.
Acta Pharmacol Sin ; 45(4): 857-866, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200149

RESUMEN

HER3 (human epidermal growth factor receptor 3) acts through heterodimerization with EGFR (epidermal growth factor receptor) or HER2 to play an essential role in activating phosphoinositide 3-kinase (PI3K) and AKT signaling-a crucial pathway that promotes tumor cell survival. HER3 is a promising target for cancer therapy, and several HER3-directed antibodies have already entered into clinical trials. In this study we characterized a novel anti-HER3 monoclonal antibody, SIBP-03. SIBP-03 (0.01-10 µg/mL) specifically and concentration-dependently blocked both neuregulin (NRG)-dependent and -independent HER3 activation, attenuated HER3-mediated downstream signaling and inhibited cell proliferation. This antitumor activity was dependent, at least in part, on SIBP-03-induced, cell-mediated cytotoxicity and cellular phagocytosis. Importantly, SIBP-03 enhanced the antitumor activity of EGFR- or HER2-targeted drugs (cetuximab or trastuzumab) in vitro and in vivo. The mechanisms underlying this synergy involve increased inhibition of HER3-mediated downstream signaling. Collectively, these results demonstrated that SIBP-03, which is currently undergoing a Phase I clinical trial in China, may offer a new treatment option for patients with cancers harboring activated HER3, particularly as part of a combinational therapeutic strategy.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos , Neoplasias , Receptor ErbB-3 , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/metabolismo , Transducción de Señal , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Neoplasias/terapia
20.
Clin Cardiol ; 47(2): e24205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108229

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic syndrome. It is the most common cause of cryptogenic cirrhosis. The disease is also involved in the occurrence and development of type 2 diabetes and atherosclerosis and can directly affect the outcome of patients with coronary heart disease. Therefore, the focus of treatment of nonalcoholic fatty liver disease has also begun to focus on the treatment of risk factors for atherosclerotic heart disease. In this study, we investigated the difference between patients with coronary artery stenosis combined with NAFLD and those without NAFLD and evaluated the predictive factors and value of functional coronary artery ischemia in patients with NAFLD. HYPOTHESIS: Many clinical factors (such as age, BMI, hyperglycemia) and imaging parameters (such as CACS grade) in the NAFLD group were different from those in the non-NAFLD group. The predictive model combined with multiple influencing factors has a good value in predicting coronary artery ischemia in patients with NAFLD. METHODS: We collected the clinical and imaging data of patients who underwent coronary computed tomography angiography and coronary artery calcification score (CACS) scans between January and June 2023. A total of 392 patients were included and divided into the NAFLD group and the non-NAFLD group. Based on CT fractional flow reserve (CT-FFR), patients with NAFLD were divided into CT-FFR ≤ 0.08 group and CT-FFR > 0.08 group. RESULTS: Significant differences were observed between the non-NAFLD and NAFLD groups in terms of age, body mass index, hyperglycemia, hyperlipidemia, triglyceride, high-density lipoprotein, coronary artery disease-reporting and data system (CAD-RADS) classification, CACS classification, number of diseased coronary arteries, and CT-FFR ≤ 0.80 ratio (p < .05). The CAD-RADS and CACS classifications can independently predict functional coronary artery ischemia in NAFLD patients. The combined use of CAD-RADS and CACS classifications resulted in an area under the curve of 0.819 (95% confidence interval: 0.761-0.876) for predicting coronary artery ischemia in NAFLD patients, which was higher than the individual classification methods (CAD-RADS: 0.762, CACS: 0.742) (p = .000). CONCLUSIONS: There are differences between patients with coronary artery stenosis and NAFLD and those without NAFLD. The CAD-RADS classification and CACS classification can economically and efficiently predict functional coronary artery ischemia in patients with NAFLD, which has crucial value in clinical diagnosis and treatment.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Diabetes Mellitus Tipo 2 , Reserva del Flujo Fraccional Miocárdico , Hiperglucemia , Isquemia Miocárdica , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Angiografía Coronaria/métodos , Pronóstico , Estudios Retrospectivos , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/diagnóstico , Estenosis Coronaria/diagnóstico , Estenosis Coronaria/diagnóstico por imagen , Angiografía por Tomografía Computarizada/métodos , Isquemia , Hiperglucemia/complicaciones , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA