RESUMEN
Changes in precipitation patterns induced by global climate change have profound implications for the structure and function of grassland ecosystems. However, the relationship between plant diversity and ecosystem function across different grassland types, particularly those with varying plant compositions and dominant species, remains inadequately understood. To address this knowledge gap, a five-year experimental manipulation of precipitation was conducted within herbaceous and shrub communities in the desert grasslands of Inner Mongolia. We found that increased precipitation significantly enhances aboveground biomass (AGB), belowground biomass (BGB), and community total biomass (CTB) in both herbaceous and shrub communities. In herbaceous communities, increased precipitation led to a disproportionate increase in both aboveground and belowground biomass, supporting the optimal allocation hypothesis. Structural equation modeling (SEM) further elucidated that precipitation regulates AGB and CTB through species richness and functional traits in herbaceous communities. In shrub communities, precipitation influences AGB, BGB, and CTB by affecting species richness and soil water content. This study highlights the critical role of precipitation in shaping biomass dynamics and allocation strategies within herbaceous and shrub communities in desert steppe of Inner Mongolia. These findings provide essential insights into the potential responses of desert grassland ecosystems to ongoing climate change.
RESUMEN
[This corrects the article DOI: 10.3389/fvets.2024.1410371.].
RESUMEN
Background: Ulcerative colitis (UC) is a debilitating intestinal disorder that imposes a significant burden on those affected. Fatty acid metabolism plays a pivotal role in regulating immune cell function and maintaining internal homeostasis. This study investigates the biological and clinical significance of fatty acid metabolism within the context of UC. Methods: Gene expression profiles from patients with UC and healthy controls were retrieved, enabling the identification of differentially expressed genes (DEGs) specific to UC. These DEGs were then intersected with genes related to fatty acid metabolism, resulting in the identification of differentially expressed fatty acid metabolism-related genes (FAM-DEGs). Machine learning was employed to pinpoint key feature genes from the FAM-DEGs, which were subsequently used to construct a predictive UC model and to uncover molecular subtypes associated with fatty acid metabolism in UC. An animal model of UC was established using 3% dextran sulfate sodium (DSS) administration. Western blot analysis confirmed the expression levels of genes in intestinal tissues. Results: The machine learning analysis identified three pivotal genes-ACAT1, ACOX2, and HADHB-culminating in a highly predictive nomogram. Consensus cluster analysis further categorized 637 UC samples into two distinct subgroups. The molecular subtypes related to fatty acid metabolism in UC exhibited significant differences in gene expression, biological activities, and enrichment pathways. Immune infiltration analysis highlighted elevated expression of two genes (excluding HADHB) in subtype 1, which corresponded with a marked increase in immune cell infiltration within this subtype. Western blot analysis demonstrated that ACAT1, ACOX2, and HADHB expression levels in the DSS group were significantly reduced, paralleling those observed in the normal group. Conclusion: This study highlights the critical role of specific fatty acid metabolism-related genes in UC, emphasizing their potential as targets for therapeutic intervention and shedding light on the underlying mechanisms of UC progression.
RESUMEN
Background: The causal relationship between certain immune cells and erectile dysfunction (ED) is still uncertain. Aim: The study sought to investigate the causal effect of 731 types of immune cells on ED through Mendelian randomization (MR) using genome-wide association studies (GWAS). Methods: Genetic instruments for 731 immune cells were identified through GWAS, and ED data were obtained from the FinnGen database. Univariable and multivariable bidirectional MR studies were conducted to explore potential causal relationships between these immune cells and ED. The inverse-variance weighted method was primarily used, with Cochran's Q test and MR-Egger intercept test assessing pleiotropy and heterogeneity. Bayesian weighted Mendelian randomization (BWMR) was also employed. Outcomes: Six immune cells were identified as related to ED. CD45 on Natural Killer (NK) cells, CD33dim HLA DR+ CD11b + Absolute Count, CD19 on IgD- CD38dim B cells, and CD3 on CD39+ resting CD4 regulatory T cells were identified as risk factors, whereas CD20 on IgD+ CD38dim B cells and Activated & resting CD4 regulatory T cell %CD4+ T cells were protective factors. Further multivariable MR analysis confirmed that 5 of these immune cells independently impacted ED, except for CD45 on NK cells. Reverse MR analysis indicated that ED occurrence decreases certain immune cell counts, but BWMR found no causal relationship for CD20 on IgD+ CD38dim B cells. Results: Our MR analysis confirmed a potential bidirectional causal relationship between immune cells and ED, providing new insights into potential mechanisms and therapeutic strategies. Clinical Translation: This study provides evidence for the impact of certain immune cells on the development of ED and suggests potential therapeutic targets. Strengths and Limitations: We performed both univariable and multivariable MR to strengthen the causal relationship between exposures and outcomes. However, the population in this study was limited to European ancestry. Conclusion: Our MR analysis confirmed a potential bidirectional causal relationship between immune cells and ED. This provides new insights into potential mechanisms of pathogenesis and subsequent therapeutic strategies.
RESUMEN
Jumbo phages are a group of tailed bacteriophages with large genomes and capsids. As a prototype of jumbo phage, ΦKZ infects Pseudomonas aeruginosa, a multi-drug-resistant (MDR) opportunistic pathogen leading to acute or chronic infection in immunocompromised individuals. It holds potential to be used as an antimicrobial agent and as a model for uncovering basic phage biology. Although previous low-resolution structural studies have indicated that jumbo phages may have more complicated capsid structures than smaller phages such as HK97, the detailed structures and the assembly mechanism of their capsids remain largely unknown. Here, we report a 3.5-Å-resolution cryo-EM structure of the ΦKZ capsid. The structure unveiled ten minor capsid proteins, with some decorating the outer surface of the capsid and the others forming a complex network attached to the capsid's inner surface. This network seems to play roles in driving capsid assembly and capsid stabilization. Similar mechanisms of capsid assembly and stabilization are probably employed by many other jumbo viruses.
Asunto(s)
Proteínas de la Cápside , Cápside , Microscopía por Crioelectrón , Pseudomonas aeruginosa , Cápside/ultraestructura , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Pseudomonas aeruginosa/virología , Ensamble de Virus , Fagos Pseudomonas/ultraestructura , Fagos Pseudomonas/química , Bacteriófagos/fisiología , Bacteriófagos/química , Bacteriófagos/ultraestructura , Modelos Moleculares , Genoma ViralRESUMEN
Background: CTLA4, an immune checkpoint, plays an important role in tumor immunotherapy. The purpose of this study was to develop a pathomics signature to evaluate CTLA4 expression and predict clinical outcomes in clear cell renal cell carcinoma (ccRCC) patients. Methods: A total of 354 patients from the TCGA-KIRC dataset were enrolled in this study. The patients were stratified into two groups based on the level of CTLA4 expression, and overall survival rates were analyzed between groups. Pathological features were identified using machine learning algorithms, and a gradient boosting machine (GBM) was employed to construct the pathomics signatures for predicting prognosis and CTLA4 expression. The predictive performance of the model was subsequently assessed. Enrichment analysis was performed on diferentially expressed genes related to the pathomics score (PS). Additionally, correlations between PS and TMB, as well as immune infiltration profiles associated with different PS values, were explored. In vitro experiments, CTLA4 knockdown was performed to investigate its impact on cell proliferation, migration, invasion, TGF-ß signaling pathway, and macrophage polarization. Results: High expression of CTLA4 was associated with an unfavorable prognosis in ccRCC patients. The pathomics signature displayed good performance in the validation set (AUC = 0.737; P < 0.001 in the log-rank test). The PS was positively correlated with CTLA4 expression. We next explored the underlying mechanism and found the associations between the pathomics signature and TGF-ß signaling pathways, TMB, and Tregs. Further in vitro experiments demonstrated that CTLA4 knockdown inhibited cell proliferation, migration, invasion, TGF-ß expression, and macrophage M2 polarization. Conclusion: High expression of CTLA4 was found to correlate with poor prognosis in ccRCC patients. The pathomics signature established by our group using machine learning effectively predicted both patient prognosis and CTLA4 expression levels in ccRCC cases.
RESUMEN
Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL on the secretion of reproductive hormones and gene expressions in order to explore its regulatory effects on the sexual cycle of ewes. Eighty healthy ewes with the same parity and similar weights were randomly assigned to the control group (C, n = 40) and the treatment group (T, n = 40, fed bromocriptine). After estrus synchronization, thirty-one ewes with overt signs of estrus were selected from each group. Six blood samples were randomly obtained by jugular venipuncture to measure the concentration of PRL, estrogen (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH) in the proestrus, estrus, metestrus, and diestrus. At the same time, we collected the ovaries of the six ewes in vivo after anesthesia in order to detect follicle and corpus luteum (CL) counts and measure the expression of hormone-receptor and apoptosis-related genes. The results show that PRL inhibition had no significant effects on the length of the estrus cycle (p > 0.05). In proestrus, the number of large and small follicles, the levels of E2, FSH, and GnRH, and the expressions of ER, FSHR, and the apoptotic gene Caspase-3 were increased (p < 0.05); and the number of middle follicles and the expression of anti-apoptotic gene Bcl-2 were decreased (p < 0.05) in the T group. In estrus, the number of large follicles, the levels of E2 and GnRH, and the expressions of the StAR, CYP19A1, and Bcl-2 genes were increased (p < 0.05), and the number of middle follicles was decreased (p < 0.05) in the T group. In metestrus, the number of small follicles and the expression of LHR (p < 0.05) and the pro-apoptotic gene Bax were increased (p < 0.05); the number of middle follicles was decreased (p < 0.05) in the T group. In diestrus, the number of large follicles, middle follicles, and CL, the level of P4, and the expressions of PR, 3ß-HSD, StAR, Caspase-3, and Bax were increased (p < 0.05); the number of small follicles and the expression of Bcl-2 were decreased (p < 0.05) in the T group. In summary, PRL inhibition can affect the secretion of reproductive hormones, the follicle count, and the gene expression during the estrus cycle. These results provide a basis for understanding the mechanisms underlying the regulation of the ewe estrus cycle by PRL.
RESUMEN
Introduction: Gonadotropin-releasing hormone (GnRH) is widely used in the timed artificial insemination protocol for sheep. However, there remains a debate regarding its impact on pregnancy rates during artificial insemination. This study aims to evaluate the effect of GnRH on the pregnancy rates in Huyang ewes, analyze the pre-implantation metabolite changes caused by GnRH using metabolomics, and elucidate the mechanism effect on pregnancy rates. Methods: All ewes were administered a vaginal progesterone sponge containing 45 mg of flurogestone acetate for 12 days and received 330 units of equine chorionic gonadotropin (eCG) intramuscularly after sponge removal. The experimental group (n = 69) received an intramuscular treatment of 17 µg GnRH agonist triptorelin 48 h after sponge removal on Day 0, while the control group (n = 41) received 1 mL of sterile saline solution. All ewes underwent a single vaginal insemination 58 h after the withdrawal of the progesterone sponge. The difference in pregnancy rates between the two groups was calculated. Metabolomic analysis was performed on plasma samples collected on Day 7 after the treatment of GnRH agonist. Results: Gonadotropin-releasing hormone (GnRH) treatment significantly reduced the pregnancy rate in the experimental group compared with the control group (72.2 vs. 82.9%, p < 0.05). Metabolomic analysis indicated that GnRH treatment affected metabolites involved in collagen synthesis and prostaglandin synthesis in the endometrial tissue, which includes a marked decrease in hydroxyproline amino acid content and a significant increase in corticosterone and prostaglandin D2 lipids and unsaturated fatty acids. Conclusion: In summary, the injection of GnRH agonist Triptorelin 48 h after progesterone sponges removal reduces the pregnancy rate of Huyang ewe following artificial insemination. It also affects the metabolite levels related to endometrial collagen and prostaglandin synthesis, harming embryo implantation.
RESUMEN
Background: Gonadotrophin-releasing hormone (GnRH) administration significantly decreases the pregnancy rate of recipient ewes after embryo transfer, possibly because GnRH affects endometrial epithelial cell function. Therefore, this study investigated the effect of GnRH on endometrial epithelial cells. Methods: Transcriptome sequencing was used to determine the regulatory effect of GnRH on the ewe endometrium, and the S100A4 gene, which showed altered transcription, was screened as a candidate regulator of this effect. Endometrial epithelial cells were further isolated, the S100A4 protein was immunoprecipitated, and host proteins that interacted with S100A4 were identified by mass spectrometry. We further verified the effects of S100A4 and GNAI2 on the proliferation of endometrial epithelial cells via overexpression/knockdown experiments and subsequent CCK-8 and EdU assays. The effect of S100A4 deletion in endometrial cells on reproduction was verified in mice with S100A4 knockout. Results: Our results showed that S100A4 gene transcription in endometrial cells was significantly inhibited after GnRH administration. GNAI2 was identified as a downstream interacting protein of S100A4, and S100A4 was confirmed to activate the MAPK signaling pathway to promote cell proliferation by targeting GNAI2. Conclusion: GnRH can suppress the expression of S100A4 in the endometrium, consequently inhibiting the proliferation of endometrial cells through the S100A4/GNAI2/MAPK signaling pathway. These findings suggest a potential explanation for the limited efficacy of GnRH in promoting embryo implantation.
RESUMEN
BACKGROUND: This study aimed to assess the association between outdoor activity and myopia among children and adolescents and investigate whether sleep time could mediate this relationship. METHODS: This cross-sectional study was performed on students aged 4-16 years in China, from August 2021 to January 2022. Outdoor activity was assessed by the Assessment Questionnaire of Exposure to Sunlight Activities for Students (AQESAS). Binary logistic regression combined with the mediation analysis was used to analyze the association of AQESAS with myopia and the mediating effect of sleep time on this relationship. RESULTS: The prevalence of myopia was 53.51% (N = 1609). Multivariate logistic regression analysis showed that more sleep time (OR = 0.794, 95%CI: 0.707-0.893) and a higher score of AQESAS (OR = 0.989, 95%CI: 0.981-0.996) were significantly associated with a decreased risk of myopia. Mediation analysis revealed that sleep time plays a mediating role in the association between outdoor activity and myopia (ACME = -0.0006, P < 0.001), and the mediation proportion was 19.7%. CONCLUSION: Outdoor activity affects myopia directly and indirectly through sleep time. The result suggested that children may be able to reduce the risk of myopia by promoting sleep through increased awareness of outdoor activity and exposure to sunlight.
Asunto(s)
Miopía , Sueño , Humanos , Estudios Transversales , Miopía/epidemiología , Masculino , Femenino , Niño , Adolescente , China/epidemiología , Preescolar , Encuestas y Cuestionarios , Prevalencia , Luz Solar , Modelos Logísticos , Pueblos del Este de AsiaRESUMEN
BACKGROUND: To improve the clinical evaluation of the prognosis of papillary renal cell carcinoma (PRCC), we screened a model to predict the survival of patients with mutations in related genes. METHODS: We downloaded RNA sequencing information from all patients with PRCC in TCGA. We first analyzed the differences in genes and the enrichment of these differences. Then, by selecting mutant genes, constructing a protein-protein interaction network, least absolute shrinkage and selection operator regression, and multivariable Cox regression, a prognosis model was constructed. Additionally, the model was validated using external data sets. We analyzed the immune infiltration of PRCC and the correlation between the model and popular targets. Finally, we performed tissue microarray analysis and immunohistochemistry to verify the expression levels of the three genes. RESULTS: We constructed a three-gene (never in mitosis gene A-related kinase 2 [NEK2], centromere protein A [CENPA], and GINS complex subunit 2 [GINS2]) model. The verification results indicated that the model had a good prediction effect. We also developed a visual nomogram. Enrichment analysis revealed the major pathways involved in muscle system processes. Immunoassays showed that the expression level of CENPA was positively correlated with PD-1 and CTLA4 expression levels. Immunohistochemical and tissue microarray results showed that these three genes were highly expressed in PRCC, which was consistent with the predicted results in the database. CONCLUSION: We constructed and verified a three-gene model to predict the patient survival. The results show that the model has a good prediction effect.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Mutación , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Pronóstico , Proteínas Cromosómicas no Histona/genética , Mapas de Interacción de Proteínas , Masculino , Antígeno CTLA-4/genética , Nomogramas , Receptor de Muerte Celular Programada 1/genética , FemeninoRESUMEN
This study aims to analyze the reversal of lipopolysaccharide (LPS)-induced cardiomyocyte apoptosis via α7nAChR by dexmedetomidine (Dex), so as to provide references for clinical treatment of myocardial disorders in the future. First, the research team divided cardiomyocytes (H9C2) were divided into a control group (normal culture), an LPS group (LPS-induced injury model), and an experimental group (pretreated with Dex before LPS induction). Subsequently, lactate dehydrogenase (LDH) and cell activity were detected, and the research team found that the LDH content of the control, experimental and LPS groups were in ascending order (P<0.05). The cell viability decreased and apoptosis increased in the LPS group, with cells mainly concentrating in the G2-M phase; the viability increased and apoptosis decreased in the experimental group, with blocked G1-G0 phase (P<0.05). This demonstrates that Dex can reverse LPS-induced apoptosis in cardiomyocytes. Subsequently, the research group also detected the expression of α7nAChR and NF-κB/AKT pathway, and it was seen that the expression of α7nAChR in the LPS group was higher than that in the control group, with activated NF-κB/AKT pathway; the α7nAChR expression in the experimental group was further elevated, but the NF-κB/AKT pathway was inhibited (P<0.05). The effects of Dex on cardiomyocytes were seen to be related to the α7nAChR and NF-κB/AKT pathways.
Asunto(s)
Apoptosis , Supervivencia Celular , Dexmedetomidina , Lipopolisacáridos , Miocitos Cardíacos , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Receptor Nicotínico de Acetilcolina alfa 7 , Dexmedetomidina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Apoptosis/efectos de los fármacos , Lipopolisacáridos/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular , L-Lactato Deshidrogenasa/metabolismoRESUMEN
The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.
RESUMEN
Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.
Asunto(s)
Altitud , Clima Desértico , Tibet , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histologíaRESUMEN
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was a highly transmissible and pathogenic coronavirus and it emerged in late 2019. SARS-CoV-2 had caused a pandemic of acute respiratory disease and its name was coronavirus disease 2019 (COVID-19). It threatened human health and public safety. This study would analyze and evaluate two different kinds of SARS-CoV-2 nucleic acid detection reagents which could provide value for accurate detection. METHODS: 80 patients were randomly selected in the First Affiliated Hospital of Anhui Medical University in December 2022 and 80 oropharyngeal swabs were collected. Nucleic acid was extracted first, and then two real-time fluorescent quantitative RT-PCR nucleic acid amplification reagents were used to detect ORF1ab and N genes. Statistical software was used to compare and analyze the results. RESULTS: Among 80 patients, 57 were males and 23 were females with an age range of 5 - 90 years with an average age of 65.7 years. Most of the specimens were collected from Department of Infectious Diseases and Department of Respiratory and Critical care. Compared with regent Reference, the sensitivity of regent A and B was 88.3% and 93.3% and the specificity was 90.0% and 95.0%, respectively. The positive rates of the double target genes were 85.0% and 93.3%, the positive rates of ORF1ab gene were 86.7% and 95.0% and the positive rates of N gene were 88.3% and 96.7%, respectively. The Kappa values were all greater than 0.75, indicating high consistency. CONCLUSIONS: Between two nucleic acid detection reagents, reagent B had higher sensitivity and specificity. And the positive rate and consistency of reagent B were also higher than that of reagent A, with statistical significance. For weakly positive specimens with low viral load, it was recommended to use another reagent with higher sensitivity to retest and ensure the accuracy and repeatability of the results.
Asunto(s)
COVID-19 , SARS-CoV-2 , Masculino , Femenino , Humanos , Anciano , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Sensibilidad y Especificidad , Pandemias , ARN Viral/genéticaRESUMEN
Benign natural killer cell enteropathy (NKCE) was first identified in the gastrointestinal (GI) tract. Notably, instances of NKCE have previously been observed at various sites other than the GI tract, including the gallbladder, lymph nodes, esophagus, and female genital tract. Typical NKCE manifests as an NK-cell immunohistological phenotype, with or without TCR rearrangement, and is characterized by the absence of Epstein-Barr virus (EBV) infection and protracted clinical progression. The misdiagnosis of NKT-cell lymphoma has resulted in some patients receiving chemotherapy, while in other instances, the patients' conditions resolved without treatment and showed no evidence of disease recurrence or progression during follow-up examinations. In this paper, we describe a unique case of EBV-negative NKCE occurring in the oral cavity, the first time such a case has been documented. The tumor completely resolved after an excisional biopsy, and subsequent follow-up did not reveal any signs of disease recurrence.
Asunto(s)
Células Asesinas Naturales , Humanos , Masculino , Células Asesinas Naturales/patología , Células Asesinas Naturales/inmunología , Boca/patología , AncianoRESUMEN
BACKGROUND: CircTADA2A has been demonstrated to play critical roles in the occurrence and development of human cancer. However, the expression pattern and biological mechanisms of circTADA2A in melanoma remains largely unknown. METHODS: CircTADA2A were detected by quantitative real-time RT-PCR (qRT-PCR) and validated by Sanger sequencing. Function of circTADA2A and its protein partner in melanoma cells was investigated using RNA interference and overexpression assays. Interaction of circTADA2A, CCHC-type zinc finger nucleic acid binding protein (CNBP) and solute carrier family 38 member 1 (SLC38A1) was confirmed by RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay. The expression of genes and proteins were detected by qRT-PCR and western blot assays. RESULTS: Data from the investigation showed that a novel circRNA (circTADA2A, hsa_circ_0043278) was markedly downregulated in melanoma cells. Functionally, circTADA2A repressed cell proliferation, migration, invasion in melanoma cells. Mechanistically, circTADA2A interacted with CNBP, acting to suppress the binding of CNBP to the SLC38A1 promoter and subsequently restrained SLC38A1 transcription, which resulting in repression of melanoma progression. CONCLUSIONS: CircTADA2A suppresses melanoma progression by regulating CNBP/SLC38A1 axis, indicating a potential therapeutic target in melanoma.