Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
BMC Plant Biol ; 24(1): 800, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179986

RESUMEN

BACKGROUND: The mitogen-activated protein kinase (MAPK) cascade is crucial cell signal transduction mechanism that plays an important role in plant growth and development, metabolism, and stress responses. The MAPK cascade includes three protein kinases, MAPK, MAPKK, and MAPKKK. The three protein kinases mediate signaling to downstream response molecules by sequential phosphorylation. The MAPK gene family has been identified and analyzed in many plants, however it has not been investigated in alfalfa. RESULTS: In this study, Medicago sativa MAPK genes (referred to as MsMAPKs) were identified in the tetraploid alfalfa genome. Eighty MsMAPKs were divided into four groups, with eight in group A, 21 in group B, 21 in group C and 30 in group D. Analysis of the basic structures of the MsMAPKs revealed presence of a conserved TXY motif. Groups A, B and C contained a TEY motif, while group D contained a TDY motif. RNA-seq analysis revealed tissue-specificity of two MsMAPKs and tissue-wide expression of 35 MsMAPKs. Further analysis identified MsMAPK members responsive to drought, salt, and cold stress conditions. Two MsMAPKs (MsMAPK70 and MsMAPK75) responds to salt and cold stresses; two MsMAPKs (MsMAPK60 and MsMAPK73) responds to cold and drought stresses; four MsMAPKs (MsMAPK1, MsMAPK33, MsMAPK64 and MsMAPK71) responds to salt and drought stresses; and two MsMAPKs (MsMAPK5 and MsMAPK7) responded to all three stresses. CONCLUSION: This study comprehensively identified and analysed the alfalfa MAPK gene family. Candidate genes related to abiotic stresses were screened by analysing the RNA-seq data. The results provide key information for further analysis of alfalfa MAPK gene functions and improvement of stress tolerance.


Asunto(s)
Medicago sativa , Proteínas Quinasas Activadas por Mitógenos , Estrés Fisiológico , Medicago sativa/genética , Medicago sativa/enzimología , Medicago sativa/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Sequías
2.
Plant Physiol Biochem ; 215: 109048, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159534

RESUMEN

Saline-alkali stress is one of the main abiotic stresses that limits plant growth. Salt stress has been widely studied, but alkaline salt degradation caused by NaHCO3 has rarely been investigated. In the present study, the alfalfa cultivar 'Zhongmu No. 1' was treated with 50 mM NaHCO3 (0, 4, 8, 12 and 24 h) to study the resulting enzyme activity and changes in mRNA, miRNA and metabolites in the roots. The results showed that the enzyme activity changed significantly after alkali stress treatment. The genomic analysis revealed 14,970 differentially expressed mRNAs (DEMs), 53 differentially expressed miRNAs (DEMis), and 463 differentially accumulated metabolites (DAMs). Combined analysis of DEMs and DEMis revealed that 21 DEMis negatively regulated 42 DEMs. In addition, when combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEMs and DAMs, we found that phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism and plant hormone signal transduction played important roles in the alkali stress response. The results of this study further elucidated the regulatory mechanism underlying the plant response to alkali stress and provided valuable information for the breeding of new saline-alkaline tolerance plant varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , MicroARNs , Estrés Fisiológico , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/efectos de los fármacos , Estrés Fisiológico/genética , MicroARNs/genética , MicroARNs/metabolismo , Álcalis , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multiómica
3.
Plants (Basel) ; 13(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732451

RESUMEN

DREB has been reported to be involved in plant growth and response to environmental factors. However, the function of DREB in growth and development has not been elucidated in alfalfa (Medicago sativa L.), a perennial tetraploid forage cultivated worldwide. In this study, an ortholog of MtDREB1C was characterized from alfalfa and named MsDREB1C accordingly. MsDREB1C was significantly induced by abiotic stress. The transcription factor MsDREB1C resided in the nucleus and had self-transactivation activity. The MsDREB1C overexpression (OE) alfalfa displayed growth retardation under both long-day and short-day conditions, which was supported by decreased MsGA20ox and upregulated MsGA2ox in the OE lines. Consistently, a decrease in active gibberellin (GA) was detected, suggesting a negative effect of MsDREB1C on GA accumulation in alfalfa. Interestingly, the forage quality of the OE lines was better than that of WT lines, with higher crude protein and lower lignin content, which was supported by an increase in the leaf-stem ratio (LSR) and repression of several lignin-synthesis genes (MsNST, MsPAL1, MsC4H, and Ms4CL). Therefore, this study revealed the effects of MsDREB1C overexpression on growth and forage quality via modifying GA accumulation and lignin synthesis, respectively. Our findings provide a valuable candidate for improving the critical agronomic traits of alfalfa, such as overwintering and feeding value of the forage.

5.
Int Immunopharmacol ; 126: 111239, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37979453

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable clinical efficacy, but challenges related to relapse and CAR-T cell exhaustion persist. One contributing factor to this exhaustion is CAR tonic signaling, where CAR-T cells self-activate without antigen stimulation, leading to reduced persistence and impaired antitumor activity. To address this issue, we conducted a preclinical study evaluating tonic signaling using nanobody-derived CAR-T cells. Our investigation revealed that specific characteristics of the complementary determining regions (CDRs), including low solubility, polarity, positive charge, energy, and area of ionic and positive CDR patches of amino acids, were associated with low antigen-independent tonic signaling. Significantly, we observed that stronger tonic signaling directly impacted CAR-T cell proliferation in vitro, consequently leading to CAR-T cell exhaustion and diminished persistence and effectiveness in vivo. Our findings provide compelling preclinical evidence and lay the foundation for the clinical assessment of CAR-T cells with distinct tonic signaling patterns. Understanding the role of CDRs in modulating tonic signaling holds promise for advancing the development of more efficient and durable CAR-T cell therapies, thereby enhancing the treatment of cancer and addressing the challenges of relapse in CAR-T cell therapy.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T , Inmunoterapia Adoptiva , Recurrencia
6.
Proc Natl Acad Sci U S A ; 120(47): e2302126120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967215

RESUMEN

Neurotransmitter receptors are increasingly recognized to play important roles in anti-tumor immunity. The expression of the ion channel N-methyl-D-aspartate receptor (NMDAR) on macrophages was reported, but the role of NMDAR on macrophages in the tumor microenvironment (TME) remains unknown. Here, we show that the activation of NMDAR triggered calcium influx and reactive oxygen species production, which fueled immunosuppressive activities in tumor-associated macrophages (TAMs) in the hepatocellular sarcoma and fibrosarcoma tumor settings. NMDAR antagonists, MK-801, memantine, and magnesium, effectively suppressed these processes in TAMs. Single-cell RNA sequencing analysis revealed that blocking NMDAR functionally and metabolically altered TAM phenotypes, such that they could better promote T cell- and Natural killer (NK) cell-mediated anti-tumor immunity. Treatment with NMDAR antagonists in combination with anti-PD-1 antibody led to the elimination of the majority of established preclinical liver tumors. Thus, our study uncovered an unknown role for NMDAR in regulating macrophages in the TME of hepatocellular sarcoma and provided a rationale for targeting NMDAR for tumor immunotherapy.


Asunto(s)
Neoplasias Hepáticas , Sarcoma , Humanos , Macrófagos Asociados a Tumores , Procesos Neoplásicos , Memantina , Microambiente Tumoral
7.
ACS Appl Mater Interfaces ; 15(39): 45926-45937, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37748100

RESUMEN

Improving cycling stability while maintaining a high initial Coulombic efficiency (ICE) of the antimony (Sb) anode is always a trade-off for the design of electrodes of sodium-ion batteries (SIBs). Herein, we prepare a carbon-free Sb8Bi1 anode with an ICE of 87.1% at 0.1 A g-1 by a one-step electrochemical reduction of Sb2O3 and Bi2O3 in alkaline solutions. The improved ICE of the Sb8Bi1 anode is due to the alloying of bismuth (Bi) that prevents irreversible interfacial reactions during the sodiation process. Unlike carbon buffers, the use of Bi will reduce the number of side reactions between the carbon buffer and sodium. Moreover, Bi2O3 can promote the reduction of Sb2O3 and reduce the particle size of Sb from ∼20 µm to below 300 nm. The electrolytic products can be modulated by controlling the cell voltages and electrolysis time. The electrolytic Sb8Bi1 anode delivered a capacity of 625 mAh g-1 after 200 cycles with an ICE of 87.1% at 0.1 A g-1 and even 625 mAh g-1 at 1 A g-1 over 100 cycles. Hence, alloying Bi into Sb is an effective way to make a long-lasting Sb anode while maintaining a high Coulombic efficiency.

8.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628861

RESUMEN

Heat shock transcription factors (HSFs) are important regulatory factors in plant stress responses to various biotic and abiotic stresses and play important roles in growth and development. The HSF gene family has been systematically identified and analyzed in many plants but it is not in the tetraploid alfalfa genome. We detected 104 HSF genes (MsHSFs) in the tetraploid alfalfa genome ("Xinjiangdaye" reference genome) and classified them into three subgroups: 68 in HSFA, 35 in HSFB and 1 in HSFC subgroups. Basic bioinformatics analysis, including genome location, protein sequence length, protein molecular weight and conserved motif identification, was conducted. Gene expression analysis revealed tissue-specific expression for 13 MsHSFs and tissue-wide expression for 28 MsHSFs. Based on transcriptomic data analysis, 21, 11 and 27 MsHSFs responded to drought stress, cold stress and salt stress, respectively, with seven responding to all three. According to RT-PCR, MsHSF27/33 expression gradually increased with cold, salt and drought stress condition duration; MsHSF6 expression increased over time under salt and drought stress conditions but decreased under cold stress. Our results provide key information for further functional analysis of MsHSFs and for genetic improvement of stress resistance in alfalfa.


Asunto(s)
Medicago sativa , Tetraploidía , Factores de Transcripción del Choque Térmico/genética , Medicago sativa/genética , Respuesta al Choque por Frío/genética , Estrés Salino , Interleucina-6
9.
Biomark Res ; 11(1): 63, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287049

RESUMEN

The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.

10.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047244

RESUMEN

Alfalfa growth and production in China are negatively impacted by high salt concentrations in soils, especially in regions with limited water supplies. Few reliable genetic markers are currently available for salt tolerance selection. As a result, molecular breeding strategies targeting alfalfa are hindered. Therefore, with the continuous increase in soil salinity in agricultural lands, it is indispensable that a salt-tolerant variety of alfalfa is produced. We collected 220 alfalfa varieties around the world for resequencing and performed genome-wide association studies (GWASs). Alfalfa seeds were germinated in saline water with different concentrations of NaCl, and the phenotypic differences in several key root traits were recorded. In the phenotypic analysis, the breeding status and geographical origin strongly affected the salt tolerance of alfalfa. Forty-nine markers were significantly associated with salt tolerance, and 103 candidate genes were identified based on linkage disequilibrium. A total of 2712 differentially expressed genes were upregulated and 3570 were downregulated based on transcriptomic analyses. Some candidate genes that affected root development in the seed germination stage were identified through the combination of GWASs and transcriptome analyses. These genes could be used for molecular breeding strategies to increase alfalfa's salt tolerance and for further research on salt tolerance in general.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Germinación/genética , Medicago sativa/genética , Fitomejoramiento , Estrés Salino/genética
11.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768707

RESUMEN

The PLATZ family is a novel class of plant-specific zinc finger transcription factors with important roles in plant growth and development and abiotic stress responses. PLATZ members have been identified in many plants, including Oryza sativa, Zea mays, Triticum aestivum, Fagopyrum tataricum, and Arabidopsis thaliana; however, due to the complexity of the alfalfa reference genome, the members of the PLATZ gene family in alfalfa (Medicago sativa L.) have not been systematically identified and analyzed. In this study, 55 Medicago sativa PLATZ genes (MsPLATZs) were identified in the alfalfa "Xinjiangdaye" reference genome. Basic bioinformatic analysis was performed, including the characterization of sequence lengths, protein molecular weights, genomic positions, and conserved motifs. Expression analysis reveals that 7 MsPLATZs are tissue-specifically expressed, and 10 MsPLATZs are expressed in all examined tissues. The transcriptomic expression of these genes is obvious, indicating that these MsPLATZs have different functions in the growth and development of alfalfa. Based on transcriptome data analysis and real-time quantitative PCR (RT-qPCR), we identified 22, 22, and 21 MsPLATZ genes that responded to salt, cold, and drought stress, respectively, with 20 MsPLATZs responding to all three stresses. This study lays a foundation for further exploring the functions of MsPLATZs, and provides ideas for the improvement of alfalfa varieties and germplasm innovation.


Asunto(s)
Arabidopsis , Medicago sativa , Medicago sativa/metabolismo , Filogenia , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Estrés Fisiológico/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
ACS Chem Biol ; 18(1): 25-33, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36606710

RESUMEN

The proteolysis targeting chimera (PROTAC) strategy results in the down-regulation of unwanted protein(s) for disease treatment. In the PROTAC process, a heterobifunctional degrader forms a ternary complex with a target protein of interest (POI) and an E3 ligase, which results in ubiquitination and proteasomal degradation of the POI. While ternary complex formation is a key attribute of PROTAC degraders, modification of the PROTAC molecule to optimize ternary complex formation and protein degradation can be a labor-intensive and tedious process. In this study, we take advantage of DNA-encoded library (DEL) technology to efficiently synthesize a vast number of possible PROTAC molecules and describe a parallel screening approach that utilizes DNA barcodes as reporters of ternary complex formation and cooperative binding. We use a designed PROTAC DEL against BRD4 and CRBN to describe a dual protein affinity selection method and the direct discovery of novel, potent BRD4 PROTACs that importantly demonstrate clear SAR. Such an approach evaluates all the potential PROTACs simultaneously, avoids the interference of PROTAC solubility and permeability, and uses POI and E3 ligase proteins in an efficient manner.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteolisis
13.
Polymers (Basel) ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080666

RESUMEN

The significance of DNA is no longer limited to its role as a biological information carrier; as a natural polymer, it also become in the field of materials. Single-stranded DNA (ssDNA) molecules with specific sequences can form a G-quadruplex or hairpin-shaped conformation with specific heavy metal ions through coordination bonds. In this study, ssDNA molecules of the four sequences were prepared into hybrid assemblies with one of the famous display materials, the tris-(8-hydroxyquinoline)aluminum (Alq3) semiconductor. Based on these hybrid assemblies, heavy metal ions, namely Pb2+, Hg2+, Cd2+ and As3+, were detected individually at the ppb level. Apart from this, in practical application, many samples containing heavy metal ions are digested with acid. By introducing MES buffer solution, the influence of acidity on the fluorescent signal of Alq3 was excluded. This strategy showed promising results in the practical application of detecting heavy metal ions in shrub branches and leaves.

14.
Cancer Lett ; 545: 215830, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870689

RESUMEN

CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.


Asunto(s)
Neoplasias , Receptores Virales , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Receptores Virales/metabolismo , Microambiente Tumoral
15.
Curr Res Immunol ; 3: 118-127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676925

RESUMEN

Immune-checkpoint inhibitor-based combination immunotherapy has become a first-line treatment for several major types of cancer including hepatocellular carcinoma (HCC), renal cell carcinoma, lung cancer, cervical cancer, and gastric cancer. Combination immunotherapy counters several immunosuppressive elements in the tumor microenvironment and activates multiple steps of the cancer-immunity cycle. The anti-PD-L1 antibody, atezolizumab, plus the anti-vascular endothelial growth factor antibody, bevacizumab, represents a promising class of combination immunotherapy. This combination has produced unprecedented clinical efficacy in unresectable HCC and become a landmark in HCC therapy. Advanced HCC patients treated with atezolizumab plus bevacizumab demonstrated impressive improvements in multiple clinical endpoints including overall survival, progress-free survival, objective response rate, and patient-reported quality of life when compared to current first-line treatment with sorafenib. However, atezolizumab plus bevacizumab first-line therapy has limitations. First, cancer patients falling into the criteria for the combination therapy may need to be further selected to reap benefits while avoiding some potential pitfalls. Second, the treatment regimen of atezolizumab plus bevacizumab at a fixed dose may require adjustment for optimal normalization of the tumor microenvironment to obtain maximum efficacy and reduce adverse events. Third, utilization of predictive biomarkers is urgently needed to guide the entire treatment process. Here we review the current status of clinically approved combination immunotherapies and the underlying immune mechanisms. We further provide a perspective analysis of the limitations for combination immunotherapies and potential approaches to overcome the limitations.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35634724

RESUMEN

Insulin-like growth factor 1 (IGF1) plays an important role in the development and growth of colorectal cancer (CRC). Hence, potential functional polymorphisms of the IGF1 gene may be involved in CRC risk. This study mainly aimed to assess the association of IGF1 rs35767 polymorphism with CRC risk in the Chinese Han population by a case-control study and a pooled analysis. In a case-control study with 208 CRC patients and 312 healthy individuals, the rs35767 polymorphism was genotyped by DNA sequencing. Furthermore, a pooled analysis of two case-control studies was performed using Stata software. IGF1 rs35767 polymorphism was significantly associated with CRC risk in both a case-control study (AA vs. GG: OR = 2.26, 95% CI = 1.35-3.80, P = 0.003; AA vs. (GG + GA): OR = 2.32, 95% CI = 1.44-3.74, P = 0.001; A vs. G: OR = 1.43, 95% CI = 1.11-1.85, P = 0.007) and a pooled analysis [(GA + AA) versus GG: OR = 1.30, 95% CI = 1.03-1.63, P = 0.03; A versus G: OR = 1.28, 95% CI = 1.08-1.53, P = 0.01]. In addition, the IGF1 rs35767 polymorphism was also significantly associated with the stage of CRC. CRC patients with the rs35767 A allele were more likely to have a high tumor stage. These findings indicated that IGF1 rs35767 polymorphism was linked to CRC risk and tumor stage in the Chinese Han population, and might serve as a valuable biomarker.


Asunto(s)
Neoplasias Colorrectales , Factor I del Crecimiento Similar a la Insulina , Estudios de Casos y Controles , China/epidemiología , Neoplasias Colorrectales/genética , Predisposición Genética a la Enfermedad , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Polimorfismo de Nucleótido Simple
18.
Hortic Res ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043170

RESUMEN

Shoot regeneration from leaf tissue requires de-differentiation of cells from a highly differentiated state into an active dividing state, but how this physiological transition occurs and is regulated especially at epigenetic level remains obscure. Here we have characterized the DNA methylome represented by 5-methylcytosine (5mC) in leaf and the callus tissue derived from the leaf explant of woodland strawberry Fragaria vesca. We detected an overall increase of DNA methylation and distinct 5mC enrichment patterns in the CG, CHG and CHH sequence contexts in genetic and transposable elements. Our analyses revealed an intricate relation between DNA methylation and gene expression levels in leaf or leaf-derived callus. However, when considering the genes involved in callus formation and shoot regeneration, e.g. FvePLT3/7, FveWIND3, FveWIND4, FveLOG4 and FveIAA14, their dynamic transcription levels were associated with the differentially methylated regions located in the promoters or gene bodies, indicating a regulatory role of DNA methylation in the transcriptional regulation of pluripotency acquisition in strawberry. Furthermore, application of a DNA methyltransferase inhibitor 5'-azacytidine (5'-Aza) hampered both callus formation and shoot regeneration from the leaf explant. We further showed that 5'-Aza down-regulated the genes involved in cell wall integrity, such as expansin, pectin lyase and pectin methylesterase genes, suggesting an essential role of cell wall metabolism during callus formation. This study reveals the contribution of DNA methylation in callus formation capacity and will provide a basis for developing a strategy to improve shoot regeneration for basic and applied research applications.

19.
Cancer Immunol Res ; 10(2): 154-161, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013002

RESUMEN

Tumor antigen-specific CD8+ T cells play a critical role in antitumor immunity. Clinical trials reinvigorating the immune system via immune checkpoint blockade (ICB) have shown remarkable clinical promise. Numerous studies have identified an association between NKG7 expression and patient outcome across different malignancies. However, aside from these correlative observations, very little is known about NKG7 and its role in antitumor immunity. Herein, we utilized single-cell RNA sequencing (scRNA-seq) datasets, NKG7-deficient mice, NKG7-reporter mice, and mouse tumor models to investigate the role of NKG7 in neoantigen-mediated tumor rejection and ICB immunotherapy. scRNA-seq of tumors from patients with metastatic melanoma or head and neck squamous cell carcinoma revealed that NKG7 expression is highly associated with cytotoxicity and specifically expressed by CD8+ T cells and natural killer (NK) cells. Furthermore, we identified a key role for NKG7 in controlling intratumor T-cell accumulation and activation. NKG7 was upregulated on intratumor antigen-specific CD8+ T cells and NK cells and required for the accumulation of T cells in the tumor microenvironment. Accordingly, neoantigen-expressing mouse tumors grew faster in Nkg7-deficient mice. Strikingly, efficacy of single or combination ICB was significantly reduced in Nkg7-deficient mice.See related article by Wen et al., p. 162.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Proteínas de la Membrana , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Células Asesinas Naturales , Melanoma/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Microambiente Tumoral
20.
Front Immunol ; 13: 1079515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713430

RESUMEN

Epstein-Barr virus (EBV) was the first tumor virus in humans. Nasopharyngeal carcinoma (NPC) accounts for approximately 60% of the 200,000 new tumor cases caused by EBV infection worldwide each year. NPC has an insidious onset and is highly malignant, with more than 70% of patients having intermediate to advanced disease at the time of initial diagnosis, and is strongly implicated in epithelial cancers as well as malignant lymphoid and natural killer/T cell lymphomas. Over 90% of patients with confirmed undifferentiated NPC are infected with EBV. In recent decades, much progress has been made in understanding the molecular mechanisms of NPC and developing therapeutic approaches. Radiotherapy and chemotherapy are the main treatment options for NPC; however, they have a limited efficacy in patients with locally advanced or distant metastatic tumors. Tumor immunotherapy, including vaccination, adoptive cell therapy, and immune checkpoint blockade, represents a promising therapeutic approach for NPC. Significant breakthroughs have recently been made in the application of immunotherapy for patients with recurrent or metastatic NPC (RM-NPC), indicating a broad prospect for NPC immunotherapy. Here, we review important research findings regarding immunotherapy for NPC patients and provide insights for future research.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/terapia , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/terapia , Neoplasias Nasofaríngeas/patología , Inmunoterapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA