Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1615-1624, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235020

RESUMEN

A comprehensive understanding of the evolution of soybean climate potential productivity and its response to climate change in Heilongjiang Province can offer reference and basis for further tapping soybean production potential and realizing stable and high yield of soybean in the frigid region. Based on meteorological data from 80 meteorological stations in Heilongjiang Province from 1961 to 2020, we estimated photosynthesis, light temperature, and climate potential productivity of soybean by the stepwise correction method, examined the spatiotemporal variations by spatial interpolation and statistical analysis methods, and analyzed the impact of changes in climate factors such as radiation, temperature, and precipitation on climate potential productivity. The results showed that during the study period, the average values of photosynthesis potential productivity (YQ), light-temperature potential productivity (YT), and climate potential productivity (YW) of soybean in Heilongjiang Province were 7533, 6444, and 3515 kg·hm-2, respectively. The temporal changes of those variables showed significant increasing trends, with increases of 125.9, 182.9, and 116.1 kg·hm-2·(10 a)-1, respectively. For the spatial distribution, YQ, YT, YW were characterized by high values in plains and lower in the mountains, and gradually decreased from southwest to northeast. Compared with that during 1961-1990, the high value zone of YW in period 1991-2020 expanded by 7.1%, and the low value zone decreased by 5.1%. YW showed a significant response to climate change. The potential temperature growth period was extended due to climate warming. The continuous increase in thermal resources, combined with relatively sufficient precipitation, effectively alleviated the negative impact of the decline in light resources on soybean production in Heilongjiang Province. The projected "warm and humid" climate would comprehensively boost climate potential productivity of soybean in Heilongjiang Province.


Asunto(s)
Cambio Climático , Glycine max , Glycine max/crecimiento & desarrollo , China , Fotosíntesis , Biomasa , Ecosistema , Temperatura
2.
J Clin Lipidol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39306545

RESUMEN

BACKGROUND: Although progress has been made in managing cholesterol, targeting inflammation is essential for further reducing cardiovascular risk, as CVDs remain the leading cause of death globally. This study aimed to explore the association between plasma ceramide levels and residual inflammatory risk in patients with CAD. METHODS: A cross-sectional observational design was adopted using data from a secondary analysis of a multicenter prospective cohort study in China. Patients were categorized into two groups based on a hs-CRP level of 2.0mg/L. Plasma ceramide levels were measured using the LC-MS/MS system. By collecting and statistically analyzing patient demographic and clinical characteristics, differences were compared between the low residual inflammatory risk group (Low RIR) and the high residual inflammatory risk group (High RIR). Multivariate logistic regression analysis was used to assess the interaction of plasma ceramides with high residual inflammation risk. RESULTS: A total of 778 patients with confirmed CAD were included in the study. Compared to the Low RIR, Cer (d18:1/16:0), Cer (d18:1/18:0), Cer (d18:1/20:0), Cer (d18:1/22:0), Cer (d18:1/24:0), and Cer (d18:1/24:1), were significantly elevated in the High RIR group. Spearman correlation analysis indicated that Cer (d18:1/16:0) levels were positively correlated with hsCRP. Further multivariable logistic regression analysis revealed that Cer (d18:1/16:0) was a significant independent indicator of high RIR beyond conventional cardiovascular risk factors. CONCLUSION: This study found a significant association between specific plasma ceramide Cer (d18:1/16:0) and high residual inflammatory risk in CAD patients, suggesting it could be an important inflammatory biomarker in the management of cardiovascular diseases.

3.
Int J Biol Macromol ; 275(Pt 2): 133708, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977050

RESUMEN

The effects of carboxylation degree (0.3-2.4 mmol/g) of cellulose nanofiber (CNF) on the microstructure and mechanical properties of edible walnut oleogels were comprehensively examined. The oleogels were well prepared by emulsion-templated approach for potential substitute of conventional saturated or trans-fats in food products. The results demonstrated that the oil-binding capacity (OBC) and textural strength of oleogels enhanced with the increase of CNF carboxyl content, while the structural strength (G' in rheological measurement) and the resistance to shear thinning was first decreased and then increased. It possibly reflected the competition on the dominant structuring mechanism by hydrogen bonding from cellulose hydroxyl groups and electrostatic interactions from -COONa function. With the combined mechanism, oleogel with low structural strength and relatively high OBC (CNF carboxyl content of 1.2 mmol/g, OBC >83 %, G' ≈ 7 × 104 Pa and firmness of 0.30 N) and oleogel with enough structural rigidity and high OBC (CNF carboxyl content of 1.8 mmol/g, OBC >89 %, G' of up to 1.7 × 105 Pa, and firmness of up to 0.66 N) were both fabricated. This reveals the feasibility of regulating oleogel structure and textual properties by using CNF as the unique oleogelator and simply changing its surface carboxyl function.


Asunto(s)
Celulosa , Juglans , Nanofibras , Compuestos Orgánicos , Reología , Celulosa/química , Juglans/química , Compuestos Orgánicos/química , Nanofibras/química
4.
Front Plant Sci ; 15: 1338530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863546

RESUMEN

Arsenic (As) pollution in rice (Oryza sativa L.), a staple food for over 3.5 billion people, is a global problem. Mixed effects of Zn, Cu, and Si amendments on plant growth and yield, including in the presence of As pollution have been reported in previous studies. To better investigate the effectiveness of these amendments on rice growth, yield, and As accumulation, we conducted a rice greenhouse experiment with 11 treatments, including control pots with and without As contamination and pots with amendments of ZnO, CuO, and SiO2 nanoparticles (ZnO NPs, CuO NPs, and SiO2 NPs), their ionic counterparts (ZnSO4, CuSO4, and Na2SiO3), and bulk particles (ZnO BPs, CuO BPs, and SiO2 BPs). Compared with the background soil, the treatment of adding As decreased rice plant height, panicle number, and grain yield by 16.5%, 50%, and 85.7%, respectively, but significantly increased the As accumulation in milled rice grains by 3.2 times. Under As contamination, the application of Zn amendments increased rice grain yield by 4.6-7.3 times; among the three Zn amendments, ZnSO4 performed best by fully recovering grain yield to the background level and significantly reducing grain AsIII/total As ratio by 46.9%. Under As contamination, the application of Cu amendments increased grain yield by 3.8-5.6 times; all three Cu amendments significantly reduced grain AsIII/total As ratio by 20.2-65.6%. The results reveal that Zn and Cu amendments could promote rice yield and prevent As accumulation in rice grains under As contamination. Despite the observed reduction in As toxicity by the tested NPs, they do not offer more advantages over their ionic counterparts and bulk particles in promoting rice growth under As contamination. Future field research using a broader range of rice varieties, investigating various As concentrations, and encompassing diverse climate conditions will be necessary to validate our findings in achieving more extensive understanding of effective management of arsenic contaminated rice field.

5.
Ying Yong Sheng Tai Xue Bao ; 35(3): 577-586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38646744

RESUMEN

The analytical equation based on Monin-Obukhov (M-O) similarity theory (i.e., wind profile equation) has been adopted since 1970s for using in the prediction of wind vertical profile over flat terrains, which is mature and accurate. However, its applicability over complex terrains remains unknown. This applicability signifies the accuracy of the estimations of aerodynamic parameters for the boundary layer of non-flat terrain, such as zero-displacement height (d) and aerodynamic roughness length (z0), which will determine the accuracy of frequency correction and source area analysis in calculating carbon, water, and trace gas fluxes based on vorticity covariance method. Therefore, the validation of wind profile model in non-flat terrain is the first step to test whether the flux model needs improvement. We measured three-dimensional wind speed data by using the Ker Towers (three towers in a watershed) at Qingyuan Forest CERN in the Mountainous Region of east Liaoning Province, and compared them with data from Panjin Agricultural Station in the Liaohe Plain, to evaluate the applicability of a generalized wind profile model based on the Monin-Obukhov similarity theory on non-flat terrain. The results showed that the generalized wind profile model could not predict wind speeds accurately of three flux towers separately located in different sites, indicating that wind profile model was not suitable for predicting wind speeds in complex terrains. In the leaf-off and leaf-on periods, the coefficient of determination (R2) between observed and predicted wind speeds ranged from 0.12 to 0.30. Compared to measured values, the standard error of the predicted wind speeds was high up to 2 m·s-1. The predicted wind speeds were high as twice as field-measured wind speed, indicating substantial overestimation. Nevertheless, this model correctly predicted wind speeds in flat agricultural landscape in Panjin Agricultural Station. The R2 between observed wind speeds and predicted wind speed ranged from 0.90 to 0.93. The standard error between observed and predicted values was only 0.5 m·s-1. Results of the F-test showed that the root-mean-square error of the observed and predicted wind speeds in each secondary forest complex terrain was much greater than that in flat agricultural landscape. Terrain was the primary factor affecting the applicability of wind profile model, followed by seasonality (leaf or leafless canopy). The wind profile model was not applicable to the boundary-layer flows over forest canopies in complex terrains, because the d was underestimated or both the d and z0 were underestimated, resulting in inaccurate estimation of aerodynamic height.


Asunto(s)
Bosques , Modelos Teóricos , Viento , China , Árboles/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Ecosistema , Altitud
6.
J Asian Nat Prod Res ; 26(2): 228-236, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193237

RESUMEN

A novel [1, 2, 4]triazolo[5,1-b]quinazoline fluorescent probe (VIi) for Fe3+ was developed, featuring with rapid response (< 5 s) and specific selectivity to Fe3+, low detection limit (1.3 × 10-5 M), as well as the ability to resist interference of chelating agent (e.g. EDTA). VIi-based fluorescent test paper can quickly recognize Fe3+ under irradiation at the wavelength of 365 nm. The fluorescence probe VIi has potential application prospects for the detection of Fe3+ in real circumstance.


Asunto(s)
Colorantes Fluorescentes , Quinazolinas , Espectrometría de Fluorescencia , Iones
7.
Analyst ; 149(2): 386-394, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38050732

RESUMEN

The presence of sulfamethoxazole (SMX) in natural waters has become a significant concern recently because of its detrimental effects on human health and the ecological environment. To address this issue, it is of utmost urgency to develop a reliable method that can determine SMX at ultra-low levels. In our research, we utilized PVP-induced shape control of a hydrothermal synthesis method to fabricate layer-like structured VS2, and employed it as an electrode modification material to prepare an electrochemical sensor for the sensitive determination of SMX. Thus, our prepared VS2 electrodes exhibited a linear range of 0.06-10.0 µM and a limit of detection (LOD) as low as 47.0 nM (S/N = 3) towards SMX detection. Additionally, the electrochemical sensor presented good agreement with the HPLC method, and afforded perfect recovery results (97.4-106.8%) in the practical analysis. The results validated the detection accuracy of VS2 electrodes, and demonstrated their successful applicability toward the sensitive determination of SMX in natural waters. In conclusion, this research provides a promising approach for the development of electrochemical sensors based on VS2 composite materials.


Asunto(s)
Antibacterianos , Compuestos de Vanadio , Humanos , Sulfametoxazol , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección
8.
Int J Biol Macromol ; 256(Pt 2): 128551, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043659

RESUMEN

The subtle balance between the interactions of polysaccharide molecules and the interactions of polysaccharide molecules with oil molecules is significantly important for developing polysaccharide-based polyunsaturated oleogels. Here, hydroxylpropyl methyl cellulose and xanthan gum were used to structure edible oleogels via emulsion-template methodology, while the effects of drying methods (hot-air drying (AD) and vacuum-freeze drying (FD)) and oil types (walnut, flaxseed and Moringa seed oil) on the structure, oil binding capacity (OBC), rheological properties, thermal behaviors and stability of oleogels were specially investigated. Compared with AD oleogels, FD oleogels exhibited significantly better OBC, enhanced gelation strength (G' value) and better capacity to holding oil after high temperature processing, which was attributed to the possibly increased oil-polysaccharide interactions. However, the weakened polysaccharide-polysaccharide interactions in FD oleogels failed in providing stronger physical interface or enough rigidity to restrict the migration of oil molecules. Polyunsaturated triacylglycerols in vegetable oils deeply participated in the construction of the network of AD oleogels through weak intermolecular non-covalent interactions, which in turn greatly changed the crystallization and melting behaviors of vegetables oils. In brief, this research may provide useful information for the development of polysaccharide-based polyunsaturated oil oleogels.


Asunto(s)
Metilcelulosa , Polisacáridos Bacterianos , Metilcelulosa/química , Aceites de Plantas , Compuestos Orgánicos
9.
Int J Phytoremediation ; 26(6): 894-902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37941161

RESUMEN

Improvement of selenium (Se) uptake in fruit tree can improve the source of food Se for humans. In this study, the effect of various abscisic acid (ABA) concentrations on the Se uptake in Cyphomandra betacea Sendt. (Solanum betaceum Cav.) seedlings was studied under Se stress. Only the concentration of 20 µmol/L ABA promoted the growth of C. betacea seedlings by increasing the biomass and regulating the resistance physiology under Se stress. ABA also increased the Se content in C. betacea seedlings under Se stress. The concentration of ABA at 20 µmol/L got the maximum root Se and shoot Se contents, which increased by 76.64% and 55.83%, respectively, compared with the control. Correlation and grey relational analyses showed that the peroxidase activity and proline content had the first two closest relationship with the shoot Se content. This study shows that ABA can promote the Se uptake in C. betacea under Se stress, and the concentration of 20 µmol/L ABA is the optimum for Se uptake and growth of C. betacea.


Under selenium (Se) stress, abscisic acid (ABA) promotes the Se uptake in Cyphomandra betacea Sendt. (Solanum betaceum Cav.) seedlings, but only the concentration of 20 µmol/L ABA promotes the growth of C. betacea seedlings. The shoot Se content is most closely correlated with the peroxidase activity and proline content. This study shows that ABA can promote the Se uptake in C. betacea under Se stress.


Asunto(s)
Selenio , Solanum , Humanos , Plantones , Selenio/farmacología , Ácido Abscísico/farmacología , Biodegradación Ambiental
10.
Front Microbiol ; 14: 1253415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829448

RESUMEN

Introduction: Soil salinization poses a worldwide challenge that hampers agricultural productivity. Methods: Employing high-throughput sequencing technology, we conducted an investigation to examine the impact of compost on the diversity of bacterial communities in saline soils. Our study focused on exploring the diversity of bacterial communities in the inter-root soil of plants following composting and the subsequent addition of compost to saline soils. Results: Compared to the initial composting stage, Alpha diversity results showed a greater diversity of bacteria during the rot stage. The germination index reaches 90% and the compost reaches maturity. The main bacterial genera in compost maturation stage are Flavobacterium, Saccharomonospora, Luteimonas and Streptomyces. Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla in the soil after the addition of compost. The application of compost has increased the abundance of Actinobacteria and Chloroflexi by 7.6 and 6.6%, respectively, but decreased the abundance of Firmicutes from 25.12 to 18.77%. Redundancy analysis revealed that soil factors pH, solid urease, organic matter, and total nitrogen were closely related to bacterial communities. Discussion: The addition of compost effectively reduced soil pH and increased soil enzyme activity and organic matter content. An analysis of this study provides theoretical support for compost's use as a saline soil amendment.

11.
Anal Chim Acta ; 1275: 341607, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37524471

RESUMEN

Developing a rapid, sensitive, and efficient analytical method for the trace-level determination of highly concerning antibiotic ciprofloxacin (CIP) is desirable to guarantee the safety of human health and ecosystems. In this work, a novel electrochemical aptasensor based on polyethyleneimine grafted reduced graphene oxide and titanium dioxide (rGO/PEI/TiO2) nanocomposite was constructed for ultrasensitive and selective detection of CIP. Through the in-situ electrochemical oxidation of Ti3C2Tx nanosheets, TiO2 nanosheets with good electrochemical response were prepared in a more convenient and eco-friendly method. The prepared TiO2 nanosheets promote charge transferring on electrode interface, and [Fe(CN)6]3-/4- as electrochemical active substance can be electrostatically attracted by rGO/PEI. Thus, electrochemical detection signal of the aptasensor variates a lot after specific binding with CIP, achieving working dynamic range of 0.003-10.0 µmol L-1, low detection limit down to 0.7 nmol L-1 (S/N = 3) and selectivity towards other antibiotics. Additionally, the aptasensor exhibited good agreement with HPLC method at 95% confidence level, and achieved good recoveries (96.8-106.3%) in real water samples, demonstrating its suitable applicability of trace detection of CIP in aquatic environment.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Humanos , Polietileneimina , Ciprofloxacina , Ecosistema , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Grafito/química , Titanio/química , Antibacterianos , Técnicas Electroquímicas/métodos , Límite de Detección
12.
Chemistry ; 29(54): e202301569, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37394679

RESUMEN

A new pathway via a cyclic intermediate for the synthesis of ketones from aldehydes and sulfonylhydrazone derivatives under basic conditions is proposed. Several control experiments were performed along with analysis of the mass spectra and in-situ IR spectra of the reaction mixture. Inspired by the new mechanism, an efficient and scalable method for homologation of aldehydes to ketones was developed. A wide variety of target ketones were obtained in yields of 42-95 % by simply heating the 3-(trifluoromethyl)benzene sulfonylhydrazones (3-(Tfsyl)hydrazone) for 2 h at 110 °C with aldehydes and with K2 CO3 and DMSO as base and solvent, respectively.

13.
Oncol Res ; 31(2): 193-205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304239

RESUMEN

Sterol o-acyltransferase1 (SOAT1) is an enzyme that regulates lipid metabolism. Nevertheless, the predictive value of SOAT1 regarding immune responses in cancer is not fully understood. Herein, we aimed to expound the predictive value and the potential biological functions of SOAT1 in pan-cancer. Raw data related to SOAT1 expression in 33 different types of cancer were acquired from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. SOAT1 expression was significantly increased in most cancers and showed a distinct correlation with prognosis. This enhanced expression of the SOAT1 gene was confirmed by evaluating SOAT1 protein expression using tissue microarrays. In addition, we found significant positive associations between SOAT1 expression levels and infiltrating immune cells, including T cells, neutrophils, and macrophages. Moreover, the co-expression analysis between SOAT1 and immune genes showed that many immune-related genes were increased with enhanced SOAT1 expression. A gene set enrichment analysis (GSEA) revealed that the expression of SOAT1 correlated with the tumor microenvironment, adaptive immune response, interferon signaling, and cytokine signaling. These findings indicate that SOAT1 is a potential candidate marker for predicting prognosis and a promising target for tumor immunotherapy in cancers.


Asunto(s)
Neoplasias , Humanos , Pronóstico , Neoplasias/genética , Inmunoterapia , Esteroles , Biomarcadores , Microambiente Tumoral/genética
14.
FASEB J ; 37(5): e22905, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37039817

RESUMEN

The hepatic vascular niche plays an important role in the pathological process of liver fibrosis. Liver sinusoidal endothelial cells (LSECs) predominantly compose hepatic vascular niches. Endothelial cell (EC)-expressing sphingosine 1-phosphate receptor 2 (S1pr2) plays an essential role in the regulation of vascular functions. Nevertheless, it remains unknown whether liver LSEC-S1pr2 might modulate pathological liver fibrosis. In this study, liver fibrosis was induced by hepatotoxin carbon tetrachloride (CCl4 ). The expression of S1pr2 is significantly downregulated in liver sinusoidal endothelial cells after CCl4 treatment. The loss of S1pr2 in LSECs significantly alleviated liver fibrosis after chronic insult, whereas the overexpression of S1pr2 in LSECs accentuated liver fibrogenesis. In vivo experiments further revealed that the deficiency of S1pr2 in LSECs dampened hepatic stellate cell (HSC) activation, while overexpression of S1pr2 in LSECs enhanced HSC activation with more extracellular matrix component production. Mechanistically, LSEC-S1pr2 activates the YAP signaling pathway to potentiate the transactivation of TGF-ß, which acts on HSCs in a paracrine manner, and thus aggravated liver fibrosis. Taken together, our results uncover a novel pathological mechanism of liver fibrosis in which LSEC-S1pr2 plays an important role in modulating the development of liver fibrosis, providing a future novel therapy target against liver fibrogenesis.


Asunto(s)
Células Endoteliales , Cirrosis Hepática , Humanos , Células Endoteliales/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Cirrosis Hepática/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
15.
Water Environ Res ; 95(3): e10850, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36889322

RESUMEN

Simultaneous nitrogen removal via heterotrophic nitrification and aerobic denitrification (HN-AD) has received widespread attention in biological treatment of wastewater. This study reported a novel Lysinibacillus fusiformis B301 strain, which effectively removed nitrogenous pollutants via HN-AD in one aerobic reactor with no nitrite accumulated. It exhibited the optimal nitrogen removal efficiency under 30°C, citrate as the carbon source and C/N ratio of 15. The maximum nitrogen removal rates were up to 2.11 mgNH4 + -N/(L·h), 1.62 mgNO3 - -N/(L·h), and 1.41 mgNO2 - -N/(L·h), respectively, when ammonium, nitrate, and nitrite were employed as the only nitrogen source under aerobic conditions. Ammonium nitrogen was preferentially consumed via HN-AD in the coexistence of three nitrogen species, and the removal efficiencies of total nitrogen were up to 94.26%. Nitrogen balance analysis suggested that 83.25% of ammonium was converted to gaseous nitrogen. The HD-AD pathway catalyzed by L. fusiformis B301 followed NH 4 + → N H 2 OH → NO 2 - → NO 3 - → NO 2 - → N 2 , supported by the results of key denitrifying enzymatic activities. PRACTITIONER POINTS: The novel Lysinibacillus fusiformis B301 exhibited the outstanding HN-AD ability. The novel Lysinibacillus fusiformis B301 simultaneously removed multiple nitrogen species. No nitrite accumulated during the HN-AD process. Five key denitrifying enzymes were involved in the HN-AD process. Ammonium nitrogen (83.25%) was converted to gaseous nitrogen by the novel strain.


Asunto(s)
Compuestos de Amonio , Nitrificación , Desnitrificación , Nitrógeno/metabolismo , Aerobiosis , Nitritos/metabolismo , Compuestos de Amonio/metabolismo
16.
J Sci Food Agric ; 103(9): 4573-4583, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36960654

RESUMEN

BACKGROUND: Accurate and timely access to large-scale crop damage information provides an essential reference for responding to agricultural disaster prevention and mitigation needs and ensuring food production security. The present study aimed to reveal the new characteristics of low-temperature cold damage to maize in the context of climate warming. Heilongjiang, one of the provinces with the highest latitude, the most significant climate change and the largest maize production in China, was taken as the study area. We combined meteorological stations and MODIS remote sensing data to spatially identify the occurrence and intensity of cold damage to maize based on the growing season temperature distance level index, as well as to assess the extent of cold damage. RESULTS: The main findings are: (i) The frequency and intensity range of cold damage in the growing season (May to September) in Heilongjiang Province from 1991 to 2020 against climate warming showed a decreasing trend. The average temperature from 1991 to 2000 was 17.777 °C, with seven occurrences of maize cold damage years, of which 5 years comprised widespread cold damage and 2 years comprised regional cold damage. The average temperature from 2000 to 2010 was 18.137 °C, with cold damage three times, of which 2 years comprised regional cold damage and 1 year comprised widespread cold damage. The average temperature from 2010 to 2020 was 18.130 °C, with one maize cold damage year occurring, which comprised regional cold damage. The frequency of maize chilling injury decreased significantly from 1991 to 2020, from 0.23 in 1991-2000 to 0.1 in 2000-2010 and, finally, to 0.03 in 2010-2020. (ii) The good consistency between MODIS_LST data and temperature data from meteorological stations suggests that MODIS_LST data can be used to build a temperature remote sensing estimation model for spatially extensive cold damage monitoring and intensity discrimination. (iii) Taking 2009 as an example of a large-scale cold damage year, the spatial discrimination of maize cold damage intensity shows that the spatial distribution of chilling injury intensity has no obvious geographical features. The intensity of cold damage was mainly mild cold damage. According to administrative regions, the scope of chilling injury was the largest in Mudanjiang City, Heihe City, and Jixi City, accounting for 91.56%, 86.25%, and 84.91%, respectively. The areas with the most extensive range of severe chilling injuries were the Great Khingan Mountains region, Heihe City, Mudanjiang City, Yichun City, and Jixi City. CONCLUSION: In the context of climate warming, the frequency and intensity range of maize cold damage showed a decreasing trend from 1991 to 2020 in Heilongjiang Province. The results of cold damage identification based on MODIS_LST data are accurate and can improve the spatial accuracy. The results of the present study provide a reference and guidance for dealing with the occurrence and defence of spatially refined cold damage. © 2023 Society of Chemical Industry.


Asunto(s)
Frío , Zea mays , Temperatura , Cambio Climático , Estaciones del Año , China
17.
Bioorg Chem ; 133: 106430, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36812828

RESUMEN

In search of new-structure compounds with good anticonvulsant activity and low neurotoxicity, a series of 3-(1,2,3,6-tetrahydropyridine)-7-azaindole derivatives was designed and synthesized. Their anticonvulsant activities were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ) test, and neurotoxicity was determined by the rotary rod method. In the PTZ-induced epilepsy model, compounds 4i, 4p and 5 k showed significant anticonvulsant activities with ED50 values at 30.55 mg/kg, 19.72 mg/kg and 25.46 mg/kg, respectively. However, these compounds did not show any anticonvulsant activity in the MES model. More importantly, these compounds have lower neurotoxicity with protective index (PI = TD50/ED50) values at 8.58, 10.29 and 7.41, respectively. In order to obtain a clearer structure-activity relationship, more compounds were designed rationally based on 4i, 4p and 5 k and their anticonvulsant activities were evaluated on PTZ models. The results demonstrated that the N-atom at the 7-position of the 7-azaindole and the double-bond in the 1,2,3,6-tetrahydropyridine skeleton was essential for antiepileptic activities.


Asunto(s)
Anticonvulsivantes , Indoles , Convulsiones , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/química , Electrochoque , Indoles/uso terapéutico , Pentilenotetrazol , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Relación Estructura-Actividad , Ratones , Animales
18.
J Asian Nat Prod Res ; 25(8): 756-764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36369722

RESUMEN

An efficient and scalable process for the synthesis of 19-hydroxyprogesterone was obtained through seven steps with 34.5% total yield, which is much higher than the process reported in the literature (11.0% total yield). The plausible ring-opening mechanism of 6,19-epoxy bridge in compound 7 was first proposed and the structures of intermediates were supported by the LC-MS analysis of the reaction mixture.

19.
J Environ Manage ; 328: 116905, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521218

RESUMEN

The adsorbent calcium-modified attapulgite (Ca-GAT) prepared by calcium chloride modification and high temperature treatment (700 °C) has proved to remove phosphorus in low-concentration phosphorus wastewater in batch adsorption experiments. Dynamic adsorption performance and industrial application potential still need further determination. This study explored the effects of various parameters on the dynamic phosphorus adsorption, including initial phosphate concentration (2-10 mg/L), flow rate (1-3 mL/min) and adsorption bed height (2-6 cm). Phosphorus adsorption ability improved and the breakthrough time increased with the increase of bed height, flow rate, and a decrease in initial phosphorus concentration. Breakthrough curves fitted four models, the Adams-Bohart, Thomas, Yoon-Nelson and Bed depth service time (BDST). The maximum adsorption amount determined by the Thomas model obtained 13.477 mg/g. The saturated fixed-bed column were regenerated with NaOH, NaOH + NaCl and HCl, among which 0.5 mol/L NaOH had the best regeneration effect. During the utilization of a large fixed-bed to treat the actual membrane bioreactor (MBR) effluent, the breakthrough point (0.5 mg/L) was obtained after 177 h. These results implied that Ca-GAT had an application potential for the treatment of low-concentration phosphorus wastewater (2 mg/L).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Fósforo , Hidróxido de Sodio/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción
20.
Sci Adv ; 8(49): eadd5598, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490347

RESUMEN

Photo- or electroreduction of carbon dioxide into highly valued products offers a promising strategy to achieve carbon neutrality. Here, a series of polyoxometalate-based metal-organic frameworks (M-POMOFs) were constructed by metalloporphyrins [tetrakis(4-carboxyphenyl)-porphyrin-M (M-TCPPs)] and reductive POM for photo- and electrocatalytic carbon dioxide reductions (PCR and ECR, respectively), and the mysteries between the roles of single metal site and cluster in catalysis were disclosed. Iron-POMOF exhibited an excellent selectivity (97.2%) with high methane production of 922 micromoles per gram in PCR, together with superior Faradaic efficiency for carbon dioxide to carbon monoxide (92.1%) in ECR. The underlying mechanisms were further clarified. Photogenerated electrons transferred from iron-TCPP to the POM cluster for methane generation under irradiation, while the abundant electrons flowed to the center of iron-TCPP for carbon monoxide formation under the applied electric field. The specific multielectron products generated on iron-POMOF through switching driving forces to control electron flow direction between single metal site and cluster catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA