Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Transplant ; 33: 9636897241264912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076075

RESUMEN

Wound healing is a complex process, which involves three stages: inflammation, proliferation, and remodeling. Inflammation is the first step; thus, immune factors play an important regulatory role in wound healing. In this study, we focused on a chemokine, C-C motif chemokine ligand 3 (CCL3), which is often upregulated for expression during wound healing. We compared cutaneous wound healing at the histological, morphological, and molecular levels in the presence and absence of CCL3. The results showed that the wound healing rate in the wild-type and CCL3-/- + CCL3 mice was faster than that of CCL3-/- mice (P < 0.01), and application of CCL3 to wounds increased the healing rate. In the process of wound healing, the degree of reepithelialization and the rate of collagen deposition in the wound of CCL3-/- mice were significantly lower than those of wild-type mice (P < 0.01). The number of macrophages and the expression levels of tumor necrosis factor(TNF)-α and transforming growth factor (TGF)-ß1 in the wounds of wild-type mice were much higher than those of the CCL3-/- mice. Removal of macrophages and CCL3-/- mice share similar phenotypes. Therefore, we infer that the wound healing requires the participation of macrophages, and CCL3 may play an important regulatory role through recruiting macrophages to the wound sites.


Asunto(s)
Quimiocina CCL3 , Macrófagos , Cicatrización de Heridas , Animales , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Cicatrización de Heridas/fisiología , Macrófagos/metabolismo , Ratones , Piel/patología , Piel/metabolismo , Piel/lesiones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Noqueados , Factor de Necrosis Tumoral alfa/metabolismo , Masculino
2.
Cell Mol Biol Lett ; 28(1): 40, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189051

RESUMEN

BACKGROUND: Deer antlers are the only known mammalian structure that undergoes full regeneration. In addition, it is peculiar because when growing, it contains vascularized cartilage. The differentiation of antler stem cells (ASCs) into chondrocytes while inducing endochondral extension of blood vessels is necessary to form antler vascularized cartilage. Therefore, antlers provide an unparalleled opportunity to investigate chondrogenesis, angiogenesis, and regenerative medicine. A study found that Galectin-1 (GAL-1), which can be used as a marker in some tumors, is highly expressed in ASCs. This intrigued us to investigate what role GAL-1 could play in antler regeneration. METHODS: We measured the expression level of GAL-1 in antler tissues and cells by immunohistochemistry, WB and QPCR. We constructed antlerogenic periosteal cells (APCs, one cell type of ASCs) with the GAL-1 gene knocked out (APCGAL-1-/-) using CRISPR-CAS9 gene editing system. The effect of GAL-1 on angiogenesis was determined by stimulating human umbilical vein endothelial cells (HUVECs) using APCGAL-1-/- conditioned medium or adding exogenous deer GAL-1 protein. The effect of APCGAL-1-/- on chondrogenic differentiation was evaluated compared with the APCs under micro-mass culture. The gene expression pattern of APCGAL-1-/- was analyzed by transcriptome sequencing. RESULTS: Immunohistochemistry revealed that GAL-1 was widely expressed in the antlerogenic periosteum (AP), pedicle periosteum (PP) and antler growth center. Western blot and qRT-PCR analysis using deer cell lines further supports this result. The proliferation, migration, and tube formation assays of human umbilical vein endothelial cells (HUVECs) showed that the proangiogenic activity of APCGAL-1-/- medium was significantly decreased (P < 0.05) compared with the APCs medium. The proangiogenic activity of deer GAL-1 protein was further confirmed by adding exogenous deer GAL-1 protein (P < 0.05). The chondrogenic differentiation ability of APCGAL-1-/- was impeded under micro-mass culture. The terms of GO and KEGG enrichment of the differentially expressed genes (DEGs) of APCGAL-1-/- showed that down-regulated expression of pathways associated with deer antler angiogenesis, osteogenesis and stem cell pluripotency, such as the PI3K-AKT signaling pathway, signaling pathways regulating pluripotency of stem cells and TGF-ß signaling pathway. CONCLUSIONS: Deer GAL-1, has strong angiogenic activity, is widely and highly expressed in deer antler. The APCs can induce angiogenesis by secreting GAL-1. The knockout of GAL-1 gene of APCs damaged its ability to induce angiogenesis and differentiate into chondrocytes. This ability is crucial to the formation of deer antler vascularized cartilage. Moreover, Deer antlers offer a unique model to explore explore how angiogenesis at high levels of GAL-1 expression can be elegantly regulated without becoming cancerous.


Asunto(s)
Cuernos de Venado , Ciervos , Animales , Humanos , Condrogénesis/genética , Ciervos/genética , Galectina 1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales
3.
Front Biosci (Landmark Ed) ; 27(2): 69, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35227012

RESUMEN

Periosteum is essential for bone regeneration and damage repair in mammals. Most species of deer family (Cervidae) develop two kinds of special periosteum, antler periosteum and pedicle periosteum, both supporting the complete regeneration of antler. Antler is the bone organ with the fastest growth rate in mammals. Along with the fast growth of antler, its external tissues such as blood vessels, nerves and the covering skin also grow rapidly. Currently, it is still unclear whether antler periosteum contributes to the fast growth of antler and how. It is also unclear why the regenerative capacity of antler periosteum is weaker than that of pedicle periosteum. In this study, the in vitro culture system for antler periosteal cells (AnPC) was constructed for the first time using the mid-beam antler periostea during antler fast-growth period. According to our results, the cultured AnPC expressed classical MSC markers, consistent with the pedicle periosteal stem cells (PPSC). However, the fluorescence intensities of the MSC markers on AnPC were significantly weaker than those on PPSC. In addition, AnPC showed much lower proliferation rates than PPSC. The proliferation rates of the AnPC also gradually decreased after successive passages, while the proliferation rates of the pedicle periosteal stem cells remained unchanged. These findings may partially explain the weaker regenerative capacity of antler periosteum. Further comparative global gene analysis revealed clearly the different gene expressed patterns between AnPC and PPSC. AnPC may mainly function on promoting angiogenesis, nerve growth and intramembrane bone formation during antler regeneration, whereas PPSC may primarily be involved in androgen signaling receptor pathway and PI3K-Akt signaling pathway and function on maintaining stem cell renewal.


Asunto(s)
Cuernos de Venado , Ciervos , Animales , Cuernos de Venado/fisiología , Biomarcadores/metabolismo , Ciervos/fisiología , Periostio/metabolismo , Fosfatidilinositol 3-Quinasas , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA