Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Heliyon ; 10(9): e30343, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707325

RESUMEN

Adhesions are the most common complication of abdominal or pelvic surgery and remain a challenging problem. To better understand the development tendency of abdominal adhesions, we performed a comprehensive bibliometric analysis of the field of abdominal adhesions. In total, 2219 articles regarding abdominal adhesions were screened and analyzed from 3410 manuscripts indexed in the Web of Science-indexed manuscripts regarding abdominal adhesion from 2004 to 2023. A bibliometric analysis was performed, and CiteSpace [version 6.2. R3 (64-bit)] and VOSviewer (version 1.6.19) were used to visualize the results. The number of annual publications showed slight growth before 2019, and the USA contributed the most publications. The most prolific author in this domain was Diamond, while the publications from Ten Broek had the strongest influence. The most popular journal in this field was the Journal of Surgical Research, and the most frequently co-cited journal was Fertility and Sterility. After analyzing the keywords, "prevention", "surgery" and "peritoneal adhesion" were the 3 most co-cited keywords, while "adhesive small bowel obstruction" was the strongest keyword in the citation burst. Here, for the first time, we used bibliometric methods to study abdominal adhesions over the past ten years. By summarizing the characteristics of publications and predicting future research prospects, we established a framework for researchers and provided a basis for subsequent research.

2.
BMC Public Health ; 24(1): 448, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347551

RESUMEN

Whether a family history of diabetes (FHD) and exposure to perfluoroalkyl acids (PFAAs) are correlated with an increased risk of developing arthritis remains unclear. This cross-sectional study was conducted to explore the correlations between FHD or exposure to PFAAs and arthritis as well as their interaction using the National Health and Nutrition Examination Survey (NHANES). In total, 6,194 participants aged ≥ 20 years from the 2011-2018 NHANES were enrolled. PFAAs are a cluster of synthetic chemicals, including perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA) and perfluorohexane sulfonic acid (PFHxS). FHD was evaluated using self-reported questionnaires. Arthritis was classified into three types, rheumatoid arthritis (RA), osteoarthritis (OA), and others, which were diagnosed using questionnaires. Generalized linear models (GLMs) were used to test the correlation between FHD and arthritis. To examine the joint effects of PFAAs and FHD on arthritis, interaction terms were applied in the GLM. Arthritis incidence was 26.7% among all participants. FHD was associated with both RA [OR = 1.70 (95% CI: 1.15-2.50)] and other types of arthritis [OR = 1.62 (95% CI: 1.21-2.16)]. However, the relationship between FHD and OA was not significant after adjustment (P = 0.18). Interaction outcomes indicated that higher PFDA levels increased the association between FHD and arthritis. FHD is associated with an increased incidence of arthritis, which may be increased by PFDA. Given the heavy burden of arthritis, preventive measures for arthritis and reduction of PFAAs exposure for patients with FHD are required.


Asunto(s)
Artritis , Ácidos Decanoicos , Diabetes Mellitus , Contaminantes Ambientales , Fluorocarburos , Humanos , Encuestas Nutricionales , Estudios Transversales , Artritis/epidemiología , Artritis/genética
3.
Mater Today Bio ; 24: 100915, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38188648

RESUMEN

Objective: Abdominal wall hernias are common abdominal diseases, and effective hernia repair is challenging. In clinical practice, synthetic meshes are widely applied for repairing abdominal wall hernias. However, postoperative complications, such as inflammation and adhesion, are prevalent. Although biological meshes can solve this problem to a certain extent, they face the problems of heterogeneity, rapid degradation rate, ordinary mechanical properties, and high-cost. Here, a novel electrospinning mesh composed of polylactic acid and silk fibroin (PLA-SF) for repairing abdominal wall hernias was manufactured with good physical properties, biocompatibility and low production cost. Materials and methods: FTIR and EDS were used to demonstrate that the PLA-SF mesh was successfully synthesized. The physicochemical properties of PLA-SF were detected by swelling experiments and in vitro degradation experiments. The water contact angle reflected the hydrophilicity, and the stress‒strain curve reflected the mechanical properties. A rat abdominal wall hernia model was established to observe degradation, adhesion, and inflammation in vivo. In vitro cell mesh culture experiments were used to detect cytocompatibility and search for affected biochemical pathways. Results: The PLA-SF mesh was successfully synthesized and did not swell or degrade over time in vitro. It had a high hydrophilicity and strength. The PLA-SF mesh significantly reduced abdominal inflammation and inhibited adhesion formation in rat models. The in vitro degradation rate of the PLA-SF mesh was slower than that of tissue remodeling. Coculture experiments suggested that the PLA-SF mesh reduced the expression of inflammatory factors secreted by fibroblasts and promoted fibroblast proliferation through the TGF-ß1/Smad pathway. Conclusion: The PLA-SF mesh had excellent physicochemical properties and biocompatibility, promoted hernia repair of the rat abdominal wall, and reduced postoperative inflammation and adhesion. It is a promising mesh and has potential for clinical application.

4.
Eur J Pharmacol ; 964: 176272, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38110140

RESUMEN

BACKGROUND: Postoperative abdominal adhesion (PAA) is a common postoperative complication. Clinically, various methods have been used to prevent the occurrence of PAA, such as drugs and physiotherapy; however, no satisfactory results have been obtained. Luteolin (LUT) is a natural flavonoid that reduces inflammation and acts as an antioxidant. This research aimed to examine the impact and mechanism of LUT in reducing PAA. METHODS: C57/BL6 mice were used in vivo experiments. PAA model was established using a brush friction method. Visual scoring and hematoxylin and eosin staining were used to score the severity of adhesions. Network pharmacology was used to infer potential targets and core pathways of LUT. Hydrogen peroxide (H2O2) was used to induce oxidative stress in vitro, while the reactive oxygen species (ROS) assay kit was used to evaluate oxidative stress levels. Western blotting, cell immunofluorescence, and multiple immunofluorescence assays were used to detect α-SMA, vimentin, E-cadherin, collagen I, or AKT phosphorylation level. Scratch assay was used to detect cell migration. RESULTS: LUT reduced the degree of PAA in mice. It attenuated H2O2-induced ROS production and reversed mesothelial-mesenchymal transition (MMT) in HMrSV5 cells. Network pharmacology analysis showed that LUT likely exerted anti-adhesion activity by regulating the PI3K-Akt signaling pathway. Phosphorylated Akt levels were significantly reduced in LUT-treated HMrSV5 cells. LUT also significantly reduced the expression of vimentin and collagen I in adherent tissues and upregulated E-cadherin expression. CONCLUSION: LUT blocks the ROS/PI3K/AKT pathway, thereby inhibiting MMT and reducing PAA. To this end, LUT has potential in PAA therapy.


Asunto(s)
Luteolina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Cadherinas/metabolismo , Colágeno , Peróxido de Hidrógeno/farmacología , Luteolina/farmacología , Luteolina/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vimentina/metabolismo
5.
Mol Med ; 29(1): 137, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858064

RESUMEN

BACKGROUND: Intestinal ischemia-reperfusion injury occurs in acute intestinal obstruction, intussusception, acute mesenteric artery embolism, and other diseases and can lead to local intestinal necrosis, distant organ involvement, or systemic reactions, with high morbidity and mortality. Ferroptosis plays a crucial role in intestinal ischemia-reperfusion injury, and inhibition of ferroptosis may provide new approaches for treating the disease. SIRT3 protects cells from oxidative stress and may be involved in the process of ferroptosis. We hypothesized that resveratrol, an agonist of SIRT3, could ameliorate intestinal ischemia-reperfusion injury by compensating the GSH/GPX4 pathway. METHODS: Intestinal ischemia-reperfusion (I/R) and Caco-2 hypoxia-reoxygenation models were established. Transmission electron microscopy was used to assess mitochondrial function; the Chiu's score was used to evaluate the degree of intestinal mucosal injury based on HE staining; and Western blot was used to detect the SIRT3/FoxO3a pathway, tight junction proteins and ferroptosis-related protein expression. Sirt3-/- C57, shSIRT3-Caco-2 cells and siFoxO3a-Caco-2 cells were established. C11-BODIPY was used to detect lipid peroxide in cells; FD4 and IFABP were used to detect intestinal permeability; MitoSOX was used to detect ROS levels; and MitoTracker and immunofluorescence colocalization were used to detect SIRT3 levels. RESULTS: In the intestinal I/R model, I/R injury occurs mainly during the reperfusion period and leads to ferroptosis through the GSH/GPX4 pathway. Resveratrol could reduce ferroptosis and ameliorate I/R injury by activating SIRT3. In Sirt3-/- mice, more intestinal mucosal cells underwent ferroptosis, I/R injury was more severe, and resveratrol lost the ability to ameliorate I/R injury. In addition, hypoxia-reoxygenation increased RSL3-induced ferroptosis sensitivity in Caco-2 cells in vitro. In the presence of shSIRT3 or RSL3 alone, resveratrol could ameliorate Caco-2 ferroptosis, but not RSL3-induced shSIRT3-Caco-2 ferroptosis. Furthermore, resveratrol might activate the SIRT3/FoxO3a pathway, increase the expression of SOD2 and catalase, and inhibit ROS generation, thus reducing lipid peroxidation and ferroptosis. CONCLUSION: To date, this is the first study to show that resveratrol ameliorates intestinal ischemia-reperfusion injury by activating SIRT3 and reducing ferroptosis. Resveratrol can reduce intestinal ischemia-reperfusion injury by activating the SIRT3/FoxO3a pathway, increasing the expression of SOD2 and catalase, reducing ROS and LPO production, compensating for the GSH/GPX4 pathway and inhibiting ferroptosis. Resveratrol increases the expression of SOD2 and catalase, reduces the production of ROS and LPO, compensates for the GSH/GPX4 pathway and inhibits ferroptosis by activating the SIRT3/FoxO3a pathway.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Sirtuina 3 , Humanos , Ratones , Animales , Resveratrol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Catalasa , Sirtuina 3/genética , Sirtuina 3/metabolismo , Células CACO-2 , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Hipoxia
6.
Int J Med Robot ; : e2584, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792998

RESUMEN

OBJECTIVE: To evaluate the feasibility and application value of mixed reality technology (MR) in Primary retroperitoneal tumour (PRT) surgery. METHODS: From 276 patients who underwent PRT resection at the First Affiliated Hospital of Xi'an Jiaotong University, we screened 46 patients who underwent MR-assisted retroperitoneal tumour resection and 46 patients who underwent tumour resection without MR assistance. The intraoperative and postoperative recovery of the patients in both groups were compared, and the reliability and validity of the application of MR were further examined using the Likert scale. RESULTS: There was a significant difference in the mean intraoperative bleeding volume between the two groups, but it was reduced in the MR group. The results of the Likert scale showed higher scores in the MR group than non-MR group. CONCLUSIONS: MR can be used to assist PRT resection and has great potential to improve the rate of complete retroperitoneal tumour resection.

7.
Int J Mol Med ; 52(3)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37503753

RESUMEN

Following the publication of the above article, a concerned reader drew to the Editor's attention that there were a number of apparent anomalies associated with the western blots featured in Figs. 1C and E, 3A, C and E, 4A, C and E, 5B, 8A and C; moreover, the images shown for the immunohistochemical experiments in Fig. 8E contained groupings of cells that were markedly similar in appearance, comparing across the eight separate figure parts. After having conducted an internal investigation of the data in this paper, the Editor of International Journal of Molecular Medicine has judged that the potentially anomalous presentation of the western blotting data and the strikingly similar groupings of cells in Fig. 8E were too extensive that these features could have been attributed to pure coincidence. Therefore, the Editor has decided that this article should be retracted from the publication on the grounds of an overall lack of confidence in the data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor sincerely apologizes to the readership for any incovenience caused, and we thank the reader for bringing this matter to our attention. [International Journal of Molecular Medicine 35: 653­663, 2015; DOI: 10.3892/ijmm.2014.2055].

8.
J Cancer Res Clin Oncol ; 149(15): 13523-13543, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37498396

RESUMEN

PURPOSE: A high postoperative recurrence rate seriously impedes colon cancer (CC) patients from achieving long-term survival. Here, we aimed to develop a Treg-related classifier that can help predict recurrence-free survival (RFS) and therapy benefits of stage I-III colon cancer. METHODS: A Treg-related prognostic classifier was built through a variety of bioinformatic methods, whose performance was assessed by KM survival curves, time-dependent receiver operating characteristic (tROC), and Harrell's concordance index (C-index). A prognostic nomogram was generated using this classifier and other traditional clinical parameters. Moreover, the predictive values of this classifier for immunotherapy and chemotherapy therapeutic efficacy were tested using multiple immunotherapy sets and R package "pRRophetic". RESULTS: A nine Treg-related classifier categorized CC patients into high- and low-risk groups with distinct RFS in the multiple datasets (all p < 0.05). The AUC values of 5-year RFS were 0.712, 0.588, 0.669, and 0.662 in the training, 1st, 2nd, and entire validation sets, respectively. Furthermore, this classifier was identified as an independent predictor of RFS. Finally, a nomogram combining this classifier and three clinical variables was generated, the analysis of tROC, C-index, calibration curves, and the comparative analysis with other signatures confirmed its predictive performance. Moreover, KM analysis exhibited an obvious discrepancy in the subgroups, especially in different TNM stages and with adjuvant chemotherapy. We detected the difference between the two risk subsets of immune cell sub-population and the response to immunotherapy and chemotherapy. CONCLUSIONS: We built a robust Treg-related classifier and generated a prognostic nomogram that predicts recurrence-free survival in stage I-III colon cancer that can identify high-risk patients for more personalized and effective therapy.

9.
J Invest Surg ; 36(1): 2225104, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37357336

RESUMEN

Background: There is no clear description of the evolution of the progression of abdominal adhesions over time.Method: The optimized model was selected using different adhesion scoring systems. Then, this model was used to observe the progression of abdominal adhesions. Visualized observation of abdominal adhesion evolution was performed by laparoscopy and computed tomography. The inflammatory cell infiltration and collagen fibers in adhesion tissues at different times were evaluated by hematoxylin-eosin and picrosirius red staining. RNA sequencing was used to predict potential key targets of abdominal adhesions at different times.Results: The abdominal adhesion model showed the highest reproducibility when it was established using a circular tool and an electric brush. Based on this model, we found that the inflammatory response was activated early in the process of adhesion formation, peaking on day 3 and then gradually decreasing until stabilization on day 7. Collagen and fibronectin formed on day 1 and gradually increased until remaining stable on day 7. In addition, the characteristic changes in the adhesion zone from initial congestion, edema and fragile tissue to later dense and stable tissue could be vividly observed in live mice by laparoscopy and artificial pneumoperitoneum CT. The RNA sequencing results revealed that Hck on day 1, Ndufs3 and Ndufs8 on day 3 and Aif1 on day 7 might play key roles in abdominal adhesion formation.Conclusion: The construction of a standard process for describing the evolution of abdominal adhesions based on an optimized mouse model will help to facilitate subsequent adhesion-related studies.


Asunto(s)
Laparoscopía , Ratones , Animales , Reproducibilidad de los Resultados , Laparoscopía/efectos adversos , Colágeno , Adherencias Tisulares/etiología
10.
Front Immunol ; 14: 1151224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304296

RESUMEN

Tumor mutation burden (TMB) is a widely recognized biomarker for predicting the efficacy of immunotherapy. However, its use still remains highly controversial. In this study, we examine the underlying causes of this controversy based on clinical needs. By tracing the source of the TMB errors and analyzing the design philosophy behind variant callers, we identify the conflict between the incompleteness of biostatistics rules and the variety of clinical samples as the critical issue that renders TMB an ambivalent biomarker. A series of experiments were conducted to illustrate the challenges of mutation detection in clinical practice. Additionally, we also discuss potential strategies for overcoming these conflict issues to enable the application of TMB in guiding decision-making in real clinical settings.


Asunto(s)
Afecto , Inmunoterapia , Humanos , Biomarcadores
11.
Front Oncol ; 13: 1175151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293593

RESUMEN

Purpose: Silent mating type information regulator 2 homolog 1 (SIRT1) and autophagy have a two-way action (promoting cell death or survival) on the progression and treatment of gastric cancer (GC) under different conditions or environments. This study aimed to investigate the effects and underlying mechanism of SIRT1 on autophagy and the malignant biological behavior of GC cells under conditions of glucose deprivation (GD). Materials and methods: Human immortalized gastric mucosal cell GES-1 and GC cell lines SGC-7901, BGC-823, MKN-45 and MKN-28 were utilized. A sugar-free or low-sugar (glucose concentration, 2.5 mmol/L) DMEM medium was used to simulate GD. Additionally, CCK8, colony formation, scratches, transwell, siRNA interference, mRFP-GFP-LC3 adenovirus infection, flow cytometry and western blot assays were performed to investigate the role of SIRT1 in autophagy and malignant biological behaviors (proliferation, migration, invasion, apoptosis and cell cycle) of GC under GD and the underlying mechanism. Results: SGC-7901 cells had the longest tolerance time to GD culture conditions, which had the highest expression of SIRT1 protein and the level of basal autophagy. With the extension of GD time, the autophagy activity in SGC-7901 cells also increased. Under GD conditions, we found a close relationship between SIRT1, FoxO1 and Rab7 in SGC-7901 cells. SIRT1 regulated the activity of FoxO1 and upregulated the expression of Rab7 through deacetylation, which ultimately affected autophagy in GC cells. In addition, changing the expression of FoxO1 provided feedback on the expression of SIRT1 in the cell. Reducing SIRT1, FoxO1 or Rab7 expression significantly inhibited the autophagy levels of GC cells under GD conditions, decreased the tolerance of GC cells to GD, enhanced the inhibition of GD in GC cell proliferation, migration and invasion and increased apoptosis induced by GD. Conclusion: The SIRT1-FoxO1-Rab7 pathway is crucial for the autophagy and malignant biological behaviors of GC cells under GD conditions, which could be a new target for the treatment of GC.

12.
Exp Mol Med ; 54(9): 1486-1501, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100663

RESUMEN

Peritoneal adhesions (PAs) are a serious complication of abdominal surgery and negatively affect the quality of life of millions of people worldwide. However, a clear molecular mechanism and a standard therapeutic strategy for PAs have not been established. Here, we developed a standardized method to mimic the pathological changes in PAs and found that sirtuin 3 (SIRT3) expression was severely decreased in adhesion tissues, which was consistent with our bioinformatics analysis and patient adhesion tissue analysis. Thus, we hypothesized that activating SIRT3 could alleviate postsurgical PAs. Sirt3-deficient (Sirt3-/-) mice exhibited many more PAs after standardized abdominal surgery. Furthermore, compared with wild-type (Sirt3+/+) mice, Sirt3-deficient (Sirt3-/-) mice showed more prominent reactive oxygen species (ROS) accumulation, increased levels of inflammatory factors, and exacerbated mitochondrial damage and fragmentation. In addition, we observed NLRP3 inflammasome activation in the adhesion tissues of Sirt3-/- but, not Sirt3+/+ mice. Furthermore, mesothelial cells sorted from Sirt3-/- mice exhibited impaired mitochondrial bioenergetics and redox homeostasis. Honokiol (HKL), a natural compound found in several species of the genus Magnolia, could activate SIRT3 in vitro. Then, we demonstrated that treatment with HKL could reduce oxidative stress and the levels of inflammatory factors and suppress NLRP3 activation in vivo, reducing the occurrence of postsurgical PAs. In vitro treatment with HKL also restored mitochondrial bioenergetics and promoted mesothelial cell viability under oxidative stress conditions. Taken together, our findings show that the rescue of SIRT3 by HKL may be a new therapeutic strategy to alleviate and block postsurgical PA formation.


Asunto(s)
Sirtuina 3 , Compuestos Alílicos , Animales , Compuestos de Bifenilo , Células Cultivadas , Inflamasomas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Fenoles , Calidad de Vida , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
13.
iScience ; 25(1): 103647, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35028532

RESUMEN

The risk of pancreatic cancer is higher among people who are cigarette smokers than among non-smokers; however, the action mechanisms of cigarette metabolites are not yet fully understood. In this study, we investigated the effect of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in cigarette smoking on chronic pancreatitis and pancreatic cancer as well as the biological mechanism of NNK causing malignant transformation. We show that smoking may promote Kras mutation and P16 promoter methylation from clinical samples and NNK markedly facilitates the growth and migration of pancreatic cancer cells via the activation of Sonic Hedgehog signaling. We demonstrate that NNK promotes acinar-to-ductal metastasis and pancreatic intraepithelial neoplasia in rats with chronic pancreatitis, accompanied by desmoplastic reaction and Gli1 overexpression. Together, we here present evidence that NNK provokes the progression of chronic pancreatitis toward pancreatic cancer and highlight potential strategies and targets for early prevention of pancreatic cancer and its therapeutics.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35069760

RESUMEN

BACKGROUND: Many attempts have been made to inhibit the formation of postoperative intraperitoneal adhesions, but the results have been discouraging. Therefore, the identification of effective preventative measures or treatments is of great importance. In this study, the substantial potential of naringin (NG) to reduce peritoneal adhesions was validated in a rat model. MATERIALS AND METHODS: A rat peritoneal adhesion model was established by abrasion of the cecum and its opposite intraperitoneal region under aseptic surgical conditions. After the operation, three groups of NG-treated rats were given 2 mL of NG by gavage at different concentrations (40, 60, or 80 mg/kg/d). The sham, control, and hyaluronan (HA) groups were given equal volumes of normal saline daily. On the 8th day, all rats were sacrificed 30 min after the administration of an activated carbon solution (10 mL/kg) by oral gavage. Intraperitoneal adhesion formation was adequately evaluated by necropsy, hematoxylin and eosin (HE) staining, Sirius red staining, immunofluorescence staining, enzyme-linked immunosorbent assays, and reactive oxygen species (ROS) probes. The gastrointestinal dynamics of the rats were assessed on the basis of a small intestinal charcoal powder propulsion test and the detection of motilin and gastrin levels in serum. RESULTS: Intraperitoneal adhesions were markedly reduced in the group of rats receiving high-dose NG. Compared with the control group, the high-dose NG group showed clear reductions in inflammatory reactions, oxidative stress, collagen deposition, and fibroblast formation in the adhesion tissue and enhanced gastrointestinal dynamics (P < 0.05). CONCLUSION: NG alleviated the severity of intraperitoneal adhesions in a rat model by reducing inflammation, oxidative stress, collagen deposition, and fibroblast formation, highlighting the potential of NG as a drug candidate to prevent postoperative peritoneal adhesion formation.

15.
Acta Biomater ; 138: 155-167, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34653692

RESUMEN

Postoperative abdominal adhesion (PAA) is one of the more universal complications of abdominal surgery with a frequent incidence. Currently available keratinocyte growth factor (KGF)-based glues for the prevention of adhesions remain a great bottleneck since their long-term biological activity in vivo is insufficient. In this study, we fabricated hybrid polydopamine (PDA)-KGF nanoparticles (PDA-KGF NPs) by using an in situ self-assembly and polymerization method. The physicochemical properties of the PDA-KGF nanoparticles were systematically characterized. The effect of preventing PAA in rats was evaluated by using hybrid PDA-KGF NPs combined with hyaluronate (Ha). The expression levels of inflammatory factors and the degree of inflammatory cell infiltration in the injured peritoneum were evaluated by enzyme-linked immunosorbent assays and hematoxylin-eosin staining, respectively. The levels of phospho-Src expression were revealed by Western blotting. The degree of fibrosis and the density of deposited collagen fibers were measured with real-time reverse-transcription polymerase chain reaction and picrosirius red staining. The results indicated that the PDA-KGF NPs combined with Ha greatly prevented the incidence of abdominal adhesion s and promoted the repair of mesothelial cells in injured peritoneum. More importantly, the PDA-KGF NPs combined with Ha obviously reduced collagen deposition and fibrosis and inhibited the inflammatory response. Our results suggest that PDA-KGF NPs combined with Ha are promising barrier-like biomaterials for the effective prevention of postoperative tissue adhesion. STATEMENT OF SIGNIFICANCE: Postoperative abdominal adhesion (PAA) as an inevitable postoperative complication affected the quality of life of patients. Currently available methods for preventing adhesions mainly employ degradable biomaterials. Previous research demonstrated that a hybrid keratinocyte growth factor (KGF)-sodium hyaluronate (Ha) gel could prevent the formation of PAAs. However, its clinical outcomes are not satisfactory since their bioactivity in vivo is too short. In this article, we fabricated hybrid polydopamine (PDA)-KGF nanoparticles (PDA-KGF NPs), which extend KGF bioactivity, effectively prevent PAA. Moreover, PDA-KGF NPs could remarkably reduce both collagen deposition and fibrosis, inhibit the inflammatory response, and promote mesothelial regeneration. Overall, the PDA-KGF NPs combined with Ha exhibit efficient antiadhesion properties, may provide a promising clinical protocol for the prevention of PAA.


Asunto(s)
Ácido Hialurónico , Nanopartículas , Animales , Factor 7 de Crecimiento de Fibroblastos/farmacología , Humanos , Ácido Hialurónico/farmacología , Indoles , Peritoneo , Polímeros , Calidad de Vida , Ratas , Adherencias Tisulares/patología , Adherencias Tisulares/prevención & control
16.
BMJ Open ; 11(8): e045417, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341036

RESUMEN

OBJECTIVES: To evaluate the long-term survival outcomes and adverse effects of intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) and to summarise the experiences of IMRT in NPC in the past few decades in non-endemic northwest China. DESIGN: A population-based retrospective study. SETTING: An experience of using IMRT in non-endemic region of China. PARTICIPANTS: The study included 792 newly diagnosed and non-metastatic NPC patients who received IMRT from January 2006 to September 2018 in Xijing Hospital. OUTCOME MEASURES: The survival outcomes, adverse effects and failure patterns were evaluated by univariate, multivariate and subgroup analyses. RESULTS: With a median follow-up time of 46.2 months, the 5-year local recurrence-free survival, regional recurrence-free survival, distant metastasis-free survival, disease-free survival (DFS) and overall survival (OS) rates were 90.8%, 97.0%, 82.8%, 69.6% and 78.0%, respectively. Multivariate analysis showed that age, N stage, clinical stage, pathological type and primary tumour volume of more than 23 cm3 were the independent prognosis factors for DFS (all p<0.05); age, N stage, pathological type, cervical lymph node necrosis, and anaemia were significantly associated with OS (all p<0.05). The most common acute toxicities of IMRT were dermatitis, mucositis and dysphagia. Xerostomia and hearing impairment were the top two late toxicities. The main failure patterns were distant metastasis and local and/or regional relapses. CONCLUSIONS: Similar survival, toxicities and failure patterns have been observed in patients treated with IMRT in a non-endemic area of China when compared with that in endemic areas. Induction chemotherapy combined with concurrent chemoradiotherapy may benefit locally advanced NPC in non-endemic areas of China.


Asunto(s)
Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Quimioradioterapia , China/epidemiología , Supervivencia sin Enfermedad , Humanos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Estadificación de Neoplasias , Radioterapia de Intensidad Modulada/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento
17.
Oxid Med Cell Longev ; 2021: 9993704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34426761

RESUMEN

BACKGROUND: Postoperative abdominal adhesion remains one of the frequent complications after abdominal surgery and lacks effective intervention. Peritoneal mesothelial cell injury and healing play crucial roles in the process of adhesion formation, and identifying this mechanism might provide new insight into possible new therapeutic strategies for this disease. Transmembrane and immunoglobulin domain-containing 1 (TMIGD1) has been proven to protect renal epithelial cells from injury induced by oxidative stress and has also been identified as a novel adhesion molecule. Here, we investigated the role of TMIGD1 and its possible mechanism in adhesion formation. MATERIALS AND METHODS: Immunohistochemistry (IHC), qPCR, and immunofluorescence (IHF) were used to detect the expression of TMIGD1. The grade and tenacity score of adhesion were used to evaluate the adhesion formation conditions. A TMIGD1-overexpressing HMrSV5 cell line was established. MTT assay, Western blotting, Annexin V apoptosis analysis, and CK19 staining were used to measure mesothelial cell viability, apoptosis, and completeness. ROS and MDA detection were used to measure mesothelial cell oxidative stress levels. JC-1 staining, IHF, and transmission electron microscopy were performed to assess mitochondrial function. Scratch-wound and adhesion assays were used to evaluate the adhesion ability of mesothelial cells. RESULTS: First, we showed that TMIGD1 was decreased in mouse abdominal adhesion tissue and peritoneal mesothelial cells. Second, TMIGD1 overexpression inhibited adhesion formation. Third, TMIGD1 overexpression protected mesothelial cells from hydrogen peroxide- (H2O2-) induced oxidative stress injury. Fourth, TMIGD1 overexpression alleviated oxidative stress by protecting the mitochondrial function of mesothelial cells. In addition, TMIGD1 overexpression enhanced mesothelial cell adhesion. CONCLUSION: Our findings suggest that TMIGD1 protects mesothelial cells from oxidative stress injury by protecting their mitochondrial function, which is decreased in regular abdominal adhesion tissue. In addition, TMIGD1 enhances peritoneal mesothelial cell adhesion to promote healing.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Estrés Oxidativo , Cicatrización de Heridas , Abdomen , Animales , Ratones , Peritoneo , Adherencias Tisulares
18.
J Cell Mol Med ; 24(16): 9397-9408, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32633891

RESUMEN

Caveolin-1 (Cav-1) is the principal structural component of caveolae, and its dysregulation occurs in cancer. However, the role of Cav-1 in pancreatic cancer (PDAC) tumorigenesis and metabolism is largely unknown. In this study, we aimed to investigate the effect of pancreatic stellate cell (PSC) Cav-1 on PDAC metabolism and aggression. We found that Cav-1 is expressed at low levels in PDAC stroma and that the loss of stromal Cav-1 is associated with poor survival. In PSCs, knockdown of Cav-1 promoted the production of reactive oxygen species (ROS), while ROS production further reduced the expression of Cav-1. Positive feedback occurs in Cav-1-ROS signalling in PSCs, which promotes PDAC growth and induces stroma-tumour metabolic coupling in PDAC. In PSCs, positive feedback in Cav-1-ROS signalling induced a shift in energy metabolism to glycolysis, with up-regulated expression of glycolytic enzymes (hexokinase 2 (HK-2), 6-phosphofructokinase (PFKP) and pyruvate kinase isozyme type M2 (PKM2)) and transporter (Glut1) expression and down-regulated expression of oxidative phosphorylation (OXPHOS) enzymes (translocase of outer mitochondrial membrane 20 (TOMM20) and NAD(P)H dehydrogenase [quinone] 1 (NQO1)). These events resulted in high levels of glycolysis products such as lactate, which was secreted by up-regulated monocarboxylate transporter 4 (MCT4) in PSCs. Simultaneously, PDAC cells took up these glycolysis products (lactate) through up-regulated MCT1 to undergo OXPHOS, with down-regulated expression of glycolytic enzymes (HK-2, PFKP and PKM2) and up-regulated expression of OXPHOS enzymes (TOMM20 and NQO1). Interrupting the metabolic coupling between the stroma and tumour cells may be an effective method for tumour therapy.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Caveolina 1/metabolismo , Retroalimentación Fisiológica , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Células del Estroma/patología , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Glucólisis , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Fosforilación Oxidativa , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Pronóstico , Células del Estroma/metabolismo , Tasa de Supervivencia , Microambiente Tumoral
19.
Oxid Med Cell Longev ; 2020: 1868764, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377291

RESUMEN

A more comprehensive understanding of the complexity of pancreatic cancer pathobiology, especially, and understanding of the role of the tumor microenvironment (TME) in disease progression should pave the way for therapies to improve patient response rates. Previous studies reported that caveolin-1 (Cav-1) has both tumor-promoting and tumor-suppressive functions. However, the function of Cav-1 in the pancreatic cancer microenvironment remains largely unexplored. Here, we show that coinjection of Cav-1-silenced pancreatic stellate cells (PSCs) with pancreatic cancer cells increased tumor growth. To comprehensively characterize paracrine communication between pancreatic cancer cells and PSCs, PSCs were cultured with pancreatic cancer cell conditioned medium (CM) containing cytokines. We reveal that Cav-1-silenced PSCs facilitated the growth of pancreatic cancer cells via enhanced paracrine shh/MMP2/bFGF/IL-6 signaling. Specifically, Cav-1-silenced PSCs exhibited increased shh expression, which heterotypically activated the shh signaling pathway in pancreatic cancer cells. Moreover, Cav-1-deficient PSCs accumulated ROS to enhance the shh pathway and angiogenesis in pancreatic cancer cells. In addition, overexpression of Nrf2 reversed the effects of Cav-1 knockdown on PSCs, increasing ROS production and enhancing paracrine shh/MMP2/bFGF/IL-6 signaling. Together, our findings show that stromal Cav-1 may mediate different mechanisms in the complex interaction between cancer cells and their microenvironment though Nrf2-induced shh signaling activation during pancreatic cancer progression.


Asunto(s)
Caveolina 1/metabolismo , Proteínas Hedgehog/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Animales , Caveolina 1/deficiencia , Línea Celular Tumoral , Xenoinjertos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/patología
20.
Cell Transplant ; 29: 963689720929987, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32463297

RESUMEN

Pancreatic cancer is characterized by a hypoxic tumor microenvironment, which is primarily caused by massive fibrosis with pancreatic stellate cells (PSCs) as a main component. Our previous studies have shown that resveratrol can significantly inhibit pancreatic cancer. However, whether resveratrol can inhibit hypoxia-induced cancer development remains unclear. The objective of this study was to explore whether PSCs and hypoxia synergistically mediate aggressiveness in pancreatic cancer and detect the potential pleiotropic protective effects of resveratrol on hypoxia-induced pancreatic cancer progression. Human PSCs were treated with vehicle or resveratrol under normoxic or hypoxic conditions (3% O2), and PSC activation was assessed by immunofluorescence staining. SiRNA was used to silence hypoxia-inducible factor 1 (HIF-1) expression. The invasive capacity of Panc-1 and Mia Paca-2 cells cocultured with conditioned medium from PSCs was assessed by Transwell assays. To examine tumor formation kinetics, KPC (LSL-KrasG12D/+, Trp53fl/+, and Pdx1-Cre) mice were sacrificed at different time points. To investigate the antitumor effects of resveratrol in vivo, 8-wk-old KPC mice were divided into two groups and treated daily with or without 50 mg/kg resveratrol. Our data indicate that hypoxia induces PSC activation via HIF-1 and that the interleukin 6, vascular endothelial growth factor A, and stromal cell-derived factor 1 derived from activated PSCs promote both invasion and the epithelial-mesenchymal transition and inhibit apoptosis in pancreatic cancer cells. However, resveratrol inhibits hypoxia-induced PSC activation, blocks the interplay between PSCs and pancreatic cancer cells, and suppresses the malignant progression of pancreatic cancer and stromal desmoplasia in a KPC mouse model. Our data highlight that activated PSCs and intratumoral hypoxia are essential targets for novel strategies to prevent tumor-microenvironment interactions. Furthermore, the polyphenolic compound resveratrol effectively ameliorates the malignant progression of pancreatic ductal adenocarcinoma.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antioxidantes/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Hipoxia de la Célula/efectos de los fármacos , Células Estrelladas Pancreáticas/efectos de los fármacos , Resveratrol/uso terapéutico , Adenocarcinoma/patología , Antioxidantes/farmacología , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Humanos , Resveratrol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA