Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Sci Total Environ ; 946: 174207, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914327

RESUMEN

Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.

2.
BMC Plant Biol ; 24(1): 581, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898382

RESUMEN

Asparagus is a nutritionally dense stem vegetable whose growth and development are correlated with its quality and yield. To investigate the dynamic changes and underlying mechanisms during the elongation and growth process of asparagus stems, we documented the growth pattern of asparagus and selected stem segments from four consecutive elongation stages using physiological and transcriptome analyses. Notably, the growth rate of asparagus accelerated at a length of 25 cm. A significant decrease in the concentration of sucrose, fructose, glucose, and additional sugars was observed in the elongation region of tender stems. Conversely, the levels of auxin and gibberellins(GAs) were elevated along with increased activity of enzymes involved in sucrose degradation. A significant positive correlation existed between auxin, GAs, and enzymes involved in sucrose degradation. The ABA content gradually increased with stem elongation. The tissue section showed that cell elongation is an inherent manifestation of stem elongation. The differential genes screened by transcriptome analysis were enriched in pathways such as starch and sucrose metabolism, phytohormone synthesis metabolism, and signal transduction. The expression levels of genes such as ARF, GA20ox, NCED, PIF4, and otherswere upregulated during stem elongation, while DAO, GA2ox, and other genes were downregulated. The gene expression level was consistent with changes in hormone content and influenced the cell length elongation. Additionally, the expression results of RT-qPCR were consistent with RNA-seq. The observed variations in gene expression levels, endogenous hormones and sugar changes during the elongation and growth of asparagus tender stems offer valuable insights for future investigations into the molecular mechanisms of asparagus stem growth and development and provide a theoretical foundation for cultivation and production practices.


Asunto(s)
Asparagus , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas , Tallos de la Planta , Asparagus/genética , Asparagus/metabolismo , Asparagus/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Azúcares/metabolismo , Giberelinas/metabolismo
3.
J Hazard Mater ; 476: 134873, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38908182

RESUMEN

Xanthates, common mining flotation reagents, strongly bind thiophilic metals such as copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) and consequentially change their bioavailability and mobility upon their discharge into the environment. However, accurate quantification of the metal-xanthate complexes has remained elusive. This study develops a novel and robust method that realizes the accurate quantification of the metal-xanthate complexes resulted from single and multiple reactions of three typical xanthates (ethyl, isopropyl, and butyl xanthates) and four thiophilic metals (Cu, Pb, Cd, and Zn) in water samples. This method uses sulfur (S2-) dissociation, followed by tandem solid phase extraction of C18 + PWAX and subsequent LC-MS/MS analysis. It has a wide linearity range (1-1000 µg/L, R2 ≥ 0.995), low method detection limits (0.002-0.036 µg/L), and good recoveries (70.6-107.0 %) at 0.01-10 mg/L of xanthates. Applications of this method showed ubiquitous occurrence of the metal-xanthate complexes as the primary species in flotation wastewaters, which the concentrations were 4.6-28.9-fold higher than those previously determined. It is the first quantitative method established for the analysis of metal-xanthate complexes in water samples, which is of great importance to comprehensively understand the fate and risks of xanthates in the environment.

4.
World J Surg Oncol ; 22(1): 163, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909260

RESUMEN

Sinonasal malignant tumors are a group of uncommon malignancies that account for less than 1% of all tumors. These tumors often involve the maxillary sinus and nasal cavity, with less cumulative incidence in the ethmoidal sinus, sphenoidal sinus, and frontal sinus. The lack of consensus on the management of sinonasal malignancies is due to their rarity, diagnostic challenges, and the heterogeneity of treatments. In this paper, we present a case of endoscopic-assisted medial canthus incision combined with radiotherapy in the treatment of sinonasal malignant tumors, with the aim of providing valuable insights to clinicians on the management of these tumors.


Asunto(s)
Endoscopía , Estesioneuroblastoma Olfatorio , Neoplasias Nasales , Humanos , Estesioneuroblastoma Olfatorio/cirugía , Estesioneuroblastoma Olfatorio/patología , Estesioneuroblastoma Olfatorio/diagnóstico por imagen , Endoscopía/métodos , Neoplasias Nasales/cirugía , Neoplasias Nasales/patología , Cavidad Nasal/cirugía , Cavidad Nasal/patología , Cavidad Nasal/diagnóstico por imagen , Pronóstico , Masculino , Persona de Mediana Edad , Femenino , Neoplasias de los Senos Paranasales/cirugía , Neoplasias de los Senos Paranasales/patología , Neoplasias de los Senos Paranasales/diagnóstico por imagen
5.
Tissue Cell ; 88: 102398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38728949

RESUMEN

BACKGROUND: Allicin regulates macrophage autophagy and senescence, and inhibits hepatoma cell growth. This study investigated the mechanism by which allicin inhibits the growth of hepatoma cells. METHODS: Hepa1-6 mouse hepatoma cells were subcutaneously injected into C57BL/6 J mice to construct a tumor transplantation model. Macrophages were cultured with the supernatant of hepatoma cells to construct a cell model. The levels of mRNA and proteins and the level of Sestrin2 ubiquitination were measured by RTqPCR, immunofluorescence and Western blotting. The levels of autophagy-related factors and the activity of senescence-associated ß-galactosidase were determined by kits, and protein stability was detected by cycloheximide (CHX) tracking. RESULTS: Data analysis of clinical samples revealed that RBX1 was highly expressed in tumor tissues, while Sestrin2 was expressed at low levels in tumor tissues. Allicin can promote the expression of the autophagy-related proteins LC3 and Beclin-1 in tumor macrophages and inhibit the expression of the aging-related proteins p16 and p21, thus promoting autophagy in macrophages and inhibiting cell senescence. Moreover, allicin can inhibit the expression of RBX1, thereby reducing the ubiquitination of Sestrin2, enhancing the stability of Sestrin2, activating autophagy in tumor macrophages and inhibiting senescence. In addition, allicin treatment inhibited the proliferation and migration of hepatoma carcinoma cells cocultured with macrophages and significantly improved the development of liver cancer in mice. CONCLUSION: Allicin can affect the autophagy of macrophages and restrain the growth of hepatoma cells by regulating the ubiquitination of Sestrin2.


Asunto(s)
Autofagia , Carcinoma Hepatocelular , Senescencia Celular , Disulfuros , Neoplasias Hepáticas , Macrófagos , Ácidos Sulfínicos , Ubiquitinación , Animales , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Disulfuros/farmacología , Senescencia Celular/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Ácidos Sulfínicos/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Línea Celular Tumoral , Ubiquitinación/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Masculino , Peroxidasas/metabolismo , Sestrinas
6.
J Gastrointest Surg ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821209

RESUMEN

BACKGROUND: The occurrence of liver metastasis significantly affects the prognosis of colorectal cancer (CRC). Existing research indicates that primary tumor location, vascular invasion, lymph node metastasis, and abnormal preoperative tumor markers are risk factors for CRC liver metastasis. Positive expression of programmed cell death ligand 1 (PD-L1) may serve as a favorable prognostic marker for nasopharyngeal and gastric cancers, in which combined positive score (CPS) quantifies the level of PD-L1 expression. This study aimed to explore CPS as a potential risk factor for CRC liver metastasis and integrate other independent risk factors to establish a novel predictive model for CRC liver metastasis. METHODS: A retrospective analysis was conducted on 437 patients with CRC pathologically diagnosed at The Second Xiangya Hospital of Central South University from January 1, 2019, to December 31, 2021. Data were collected, including CPS, age, gender (male and female), primary tumor location, Ki-67 expression, pathologic differentiation, neural invasion, vascular invasion, lymph node metastasis, and preoperative tumor markers. The optimal cutoff point for the continuous variable CPS was determined using the Youden index, and all CPSs were dichotomized into high- and low-risk groups based on this threshold (scores below the threshold were considered high risk, and score above the threshold were considered low risk). Univariate logistic regression analysis was employed to identify risk factors for CRC liver metastasis, followed by multivariate logistic regression analysis to integrate the selected risk factors. The predictive model was validated through the construction of receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). A nomogram was constructed for visualization. RESULTS: The determined cutoff point for PD-L1 CPS was 4.5, with scores below this threshold indicating a high risk of CRC liver metastasis. In addition, primary tumor origin other than the rectum, presence of pericolonic lymph node metastasis, and abnormal levels of tumor markers carcinoembryonic antigen and cancer antigen 19-9 were identified as independent risk factors for CRC liver metastasis. The constructed clinical prediction model demonstrated good predictive ability and accuracy, with an area under the ROC curve of 0.871 (95% CI, 0.838-0.904). CONCLUSION: The exploration and validation of CPS as a novel predictor of CRC liver metastasis were performed. Based on these findings, a new clinical prediction model for CRC liver metastasis was developed by integrating other independent risk factors. The DCA, clinical impact curve, and nomogram graph constructed on the basis of this model have significant clinical implications and guide clinical practice.

7.
Sci Rep ; 14(1): 11694, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777813

RESUMEN

Several hematologic traits have been suggested to potentially contribute to the formation and rupture of intracranial aneurysms (IA). The purpose of this study is to explore the causal association between hematologic traits and the risk of IA. To explore the causal association between hematologic traits and the risk of IA, we employed two-sample Mendelian randomization (MR) analysis. Two independent summary-level GWAS data were used for preliminary and replicated MR analyses. The inverse variance weighted (IVW) method was employed as the primary method in the MR analyses. The stabilities of the results were further confirmed by a meta-analysis. In the preliminary MR analysis, hematocrit, hemoglobin concentration (p = 0.0047), basophil count (p = 0.0219) had a suggestive inverse causal relationship with the risk of aneurysm-associated subarachnoid hemorrhage (aSAH). The monocyte percentage of white cells (p = 0.00956) was suggestively positively causally correlated with the risk of aSAH. In the replicated MR analysis, only the monocyte percentage of white cells (p = 0.00297) remained consistent with the MR results in the preliminary analysis. The hematocrit, hemoglobin concentration, and basophil count no longer showed significant causal relationship (p > 0.05). Meta-analysis results further confirmed that only the MR result of monocyte percentage of white cells reached significance in the random effect model and fixed effect model. None of the 25 hematologic traits was causally associated with the risk of unruptured intracranial aneurysms (uIA). This study revealed a suggestive positive association between the monocyte percentage of white cells and the risk of aSAH. This finding contributes to a better understanding that monocytes/macrophages could participate in the risk of aSAH.


Asunto(s)
Estudio de Asociación del Genoma Completo , Aneurisma Intracraneal , Análisis de la Aleatorización Mendeliana , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/sangre , Hemorragia Subaracnoidea/complicaciones , Aneurisma Intracraneal/genética , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/sangre , Predisposición Genética a la Enfermedad , Hematócrito , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Hemoglobinas/metabolismo
8.
Chemosphere ; 359: 142322, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761823

RESUMEN

Selecting and cultivating low-accumulating crop varieties (LACVs) is the most effective strategy for the safe utilization of di-(2-ethylhexyl) phthalate (DEHP)-contaminated soils, promoting cleaner agricultural production. However, the adsorption-absorption-translocation mechanisms of DEHP along the root-shoot axis remains a formidable challenge to be solved, especially for the research and application of LACV, which are rarely reported. Here, systematic analyses of the root surface ad/desorption, root apexes longitudinal allocation, uptake and translocation pathway of DEHP in LACV were investigated compared with those in a high-accumulating crop variety (HACV) in terms of the root-shoot axis. Results indicated that DEHP adsorption was enhanced in HACV by root properties, elemental composition and functional groups, but the desorption of DEHP was greater in LACV than HACV. The migration of DEHP across the root surface was controlled by the longitudinal partitioning process mediated by root tips, where more DEHP accumulated in the root cap and meristem of LACV due to greater cell proliferation. Furthermore, the longitudinal translocation of DEHP in LACV was reduced, as evidenced by an increased proportion of DEHP in the root apoplast. The symplastic uptake and xylem translocation of DEHP were suppressed more effectively in LACV than HACV, because DEHP translocation in LACV required more energy, binding sites and transpiration. These results revealed the multifaceted regulation of DEHP accumulation in different choysum (Brassica parachinensis L.) varieties and quantified the pivotal regulatory processes integral to LACV formation.


Asunto(s)
Raíces de Plantas , Contaminantes del Suelo , Verduras , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Verduras/metabolismo , Suelo/química , Ácidos Ftálicos/metabolismo , Dietilhexil Ftalato/metabolismo , Adsorción
9.
Parasit Vectors ; 17(1): 214, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730303

RESUMEN

BACKGROUND: Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS: The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS: Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS: Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.


Asunto(s)
Insectos Vectores , Filogenia , ARN Ribosómico 18S , Triatoma , Trypanosoma , Animales , China/epidemiología , Ratas , Ratones , Trypanosoma/genética , Trypanosoma/aislamiento & purificación , Trypanosoma/clasificación , Triatoma/parasitología , ARN Ribosómico 18S/genética , Insectos Vectores/parasitología , Tripanosomiasis/parasitología , Tripanosomiasis/transmisión , Tripanosomiasis/veterinaria , Tripanosomiasis/epidemiología , Heces/parasitología , Proteínas HSP70 de Choque Térmico/genética , ADN Protozoario/genética , Femenino , Masculino
10.
ACS Omega ; 9(20): 22240-22247, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799348

RESUMEN

Rapid and accurate identification of the intracellular pH is critical in the field of biomedicine. In this work, we effectively identified and quantified the intracellular pH and its distribution at the single-cell level using an image sensor based on an ordinary bright-field optical microscope that divided the cell staining images into their red (R) and blue (B) channels. The grayscale of the R and B channels was subjected to a ratiometric operation to generate ratiometric grayscale cell images of the microscope. A standard curve of pH against ratiometric grayscale curve was then obtained by incubating HeLa cells at pH 6.00-7.60 in a high concentration K+ ion buffer solution containing nigericin for obtaining certain intracellular pH values. A good correlation was evidenced between pH and the ratiometric grayscale of the R and B channels in the pH range of 6.00-7.60. Subsequently, the intracellular pH value of the A549 cells under the experimental conditions was measured to be 7.22 ± 0.01 by the method. Furthermore, the changes in the intracellular pH of HeLa cells stimulated with hydrogen peroxide were sensitively monitored, which demonstrated the applicability of the method. Due to its ease of use, the developed colorimetric microscopy pH detection and monitoring method provide prospects for pH-related single-cell studies.

11.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677123

RESUMEN

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Asunto(s)
Microcistinas , Oligoquetos , Microbiología del Suelo , Contaminantes del Suelo , Animales , Oligoquetos/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Microcistinas/metabolismo , Microcistinas/toxicidad , Suelo/química , Glutatión/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Bioacumulación
12.
J Hazard Mater ; 469: 133972, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38461665

RESUMEN

Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, ß-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Ácidos Ftálicos , Ésteres/metabolismo , Ácidos Ftálicos/metabolismo , Dibutil Ftalato/metabolismo , Biodegradación Ambiental , Ecosistema , Dietilhexil Ftalato/metabolismo
13.
Food Chem X ; 21: 101222, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38389577

RESUMEN

Asparagus, characterized by its high metabolic rate, is susceptible to quality degradation. Proanthocyanidins have antioxidant, antibacterial, antiviral, and other biological functions and can inhibit the production of reactive oxygen species in plants. To enhance the shelf life of asparagus, we investigated the impact of various concentrations of proanthocyanidins on its cold storage and preservation. The findings revealed that proanthocyanidins effectively mitigated water loss, delayed chlorophyll degradation, and prevented firmness decline. Furthermore, they enhanced the activity of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase), bolstered DPPH free radical scavenging ability, and increased the levels of total phenol, total flavone, rutin, oligomeric procyanidins, proline, and soluble protein. Moreover, proanthocyanidins promoted the accumulation of vitamin C, amino acids, total saponins, and lignin in the later storage stage, contributing to increased mechanical tissue thickness. These results suggest that proanthocyanidins play a crucial role in retarding the deterioration of asparagus quality during storage by affecting the antioxidant capacity and phytochemical (polyphenol,amino acid, total saponin, and lignin) synthesis in asparagus.

14.
J Hazard Mater ; 465: 133317, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38218031

RESUMEN

Antibiotics affect bacterial community structure and functions in soil. However, the response and adaptation of root-associated bacterial communities to antibiotic stress remains poorly understood. Here, rhizobox experiments were conducted with maize (Zea mays L.) upon exposure to antibiotics ciprofloxacin or tetracycline. High-throughput sequencing analysis of bacterial community and quantitative PCR analysis of nitrogen cycling genes show that ciprofloxacin and tetracycline significantly shift bacterial community structure in bulk soil, whereas plant host may mitigate the disturbances of antibiotics on bacterial communities in root-associated niches (i.e., rhizosphere and rhizoplane) through the community stabilization. Deterministic assembly, microbial interaction, and keystone species (e.g., Rhizobium and Massilia) of root-associated bacterial communities benefit the community stability compared with those in bulk soil. Meanwhile, the rhizosphere increases antibiotic dissipation, potentially reducing the impacts of antibiotics on root-associated bacterial communities. Furthermore, rhizospheric effects deriving from root exudates alleviate the impacts of antibiotics on the nitrogen cycle (i.e., nitrification, organic nitrogen conversion and denitrification) as confirmed by functional gene quantification, which is largely attributed to the bacterial community stability in rhizosphere. The present study enhances the understanding on the response and adaptation of root-associated bacterial community to antibiotic pollution.


Asunto(s)
Antibacterianos , Bacterias , Bacterias/genética , Zea mays/microbiología , Suelo , Tetraciclina , Ciprofloxacina , Nitrógeno , Microbiología del Suelo , Rizosfera , Raíces de Plantas/microbiología
15.
Sci Total Environ ; 912: 169392, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104812

RESUMEN

Ciprofloxacin (CIP) is frequently detected in agricultural soils and can be accumulated by crops, causing phytotoxicities and food safety concerns. However, the molecular basis of its phytotoxicity and phytoaccumulation is hardly known. Here, we analyzed physiological and molecular responses of choysum (Brassica parachinensis) to CIP stress by comparing low CIP accumulation variety (LAV) and high accumulation variety (HAV). Results showed that the LAV suffered more severe inhibition of growth and photosynthesis than the HAV, exhibiting a lower tolerance to CIP toxicity. Integrated transcriptome and proteome analyses suggested that more differentially expressed genes/proteins (DEGs/DEPs) involved in basic metabolic processes were downregulated to a larger extent in the LAV, explaining its lower CIP tolerance at molecular level. By contrast, more DEGs/DEPs involved in defense responses were upregulated to a larger extent in the HAV, showing the molecular basis of its stronger CIP tolerance. Further, a CIP phytotoxicity-responsive molecular network was constructed for the two varieties to better understand the molecular mechanisms underlying the variety-specific CIP tolerance and accumulation. The results present the first comprehensive molecular profile of plant response to CIP stress for molecular-assisted breeding to improve CIP tolerance and minimize CIP accumulation in crops.


Asunto(s)
Alcaloides , Ciprofloxacina , Ciprofloxacina/toxicidad , Ciprofloxacina/metabolismo , Fotosíntesis , Transcriptoma
16.
Sci Total Environ ; 912: 169425, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128666

RESUMEN

Phytoremediation largely involves microbial degradation of organic pollutants in rhizosphere for removing organic pollutants like polycyclic aromatic hydrocarbons, phthalates and polychlorinated biphenyls. Microbial community in rhizosphere experiences complex processes of response-adaptation-feedback up on exposure to organic pollutants. This review summarizes recent research on the response and adaptation of rhizosphere microbial community to the stress of organic pollutants, and discusses the enrichment of the pollutant-degrading microbial community and genes in the rhizosphere for promoting bioremediation. Soil pollution by organic contaminants often reduces the diversity of rhizosphere microbial community, and changes its functions. Responses vary among rhizosphere microbiomes up on different classes of organic pollutants (including co-contamination with heavy metals), plant species, root-associated niches (e.g., rhizosphere, rhizoplane and endosphere), geographical location and soil properties. Soil pollution can deplete some sensitive microbial taxa and enrich some tolerant microbial taxa in rhizosphere. Furthermore, rhizosphere enriches pollutant-degrading microbial community and functional genes including different gene clusters responsible for biodegradation of organic pollutants and their intermediates, which improve the adaptation of microbiome and enhance the remediation efficiency of the polluted soil. The knowledge gaps and future research challenges are highlighted on rhizosphere microbiome in response-adaptation-feedback processes to organic pollution and rhizoremediation. This review will hopefully update understanding on response-adaptation-feedback processes of rhizosphere microbiomes and rhizoremediation for the soil with organic pollutants.


Asunto(s)
Contaminantes Ambientales , Microbiota , Contaminantes del Suelo , Contaminantes Ambientales/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Rizosfera , Microbiología del Suelo , Raíces de Plantas/metabolismo , Suelo
17.
Front Microbiol ; 14: 1291930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075857

RESUMEN

Extracellular vesicle (EV) production by bacteria is an important mechanism for microbial communication and host-pathogen interaction. EVs of some bacterial species have been reported to contain nucleic acids. However, the role of small RNAs (sRNAs) packaged in EVs is poorly understood. Here, we report on the RNA cargo of EVs produced by the pig pathogen Actinobacillus pleuropneumoniae, the causal agent of porcine pleuropneumonia, a disease which causes substantial economic losses to the swine industry worldwide. The EVs produced by aerobically and anaerobically grown bacteria were only slightly different in size and distribution. Total cell and outer membrane protein profiles and lipid composition of A. pleuropneumoniae whole cell extracts and EVs were similar, although EVs contained rough lipopolysaccharide compared to the smooth form in whole cells. Approximately 50% of Galleria mellonella larvae died after the injection of EVs. RNAseq, RT-PCR, protection from nuclease degradation, and database searching identified previously described and 13 novel A. pleuropneumoniae sRNAs in EVs, some of which were enriched compared to whole cell content. We conclude that A. pleuropneumoniae EVs contain sRNAs, including those known to be involved in virulence, and some with homologs in other Pasteurellaceae and/or non-Pasteurellaceae. Further work will establish whether the novel sRNAs in A. pleuropneumoniae EVs play any role in pathogenesis.

18.
Ear Nose Throat J ; : 1455613231212049, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38124322

RESUMEN

Laryngeal mucosa-associated lymphoid tissue (MALT) is an extra-nodal margin zone B-cell lymphoma (MALT lymphoma) and a low-grade malignant lymphoma with a low incidence, the etiology of the condition remains obscure, and the process of differential diagnosis poses a significant challenge, so it is easy to miss diagnosis and misdiagnosis clinically. The present article presents a clinical case study of a patient who was diagnosed with subglottic MALT lymphoma, which was associated with laryngeal amyloidosis. The patient underwent a successful treatment regimen comprising carbon dioxide laser and radiotherapy. In addition, the article provides an overview of relevant literature that can aid in the diagnosis and management of this rare disease. The study is expected to contribute to the existing body of knowledge on the treatment of subglottic MALT lymphoma and laryngeal amyloidosis.

19.
Clin Exp Hypertens ; 45(1): 2277654, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37963199

RESUMEN

OBJECTIVE: Endothelial dysfunction is a critical initiating factor in the development of hypertension and related complications. Follistatin-like 1 (FSTL1) can promote endothelial cell function and stimulates revascularization in response to ischemic insult. However, it is unclear whether FSTL1 has an effect on ameliorating endothelial dysfunction in spontaneously hypertensive rats (SHRs). METHODS: Wistar Kyoto (WKY) and SHRs were treated with a tail vein injection of vehicle (1 mL/day) or recombinant FSTL1 (100 µg/kg body weight/day) for 4 weeks. Blood pressure was measured by tail-cuff plethysmograph, and vascular reactivity in mesenteric arteries was measured using wire myography. RESULTS: We found that treatment with FSTL1 reversed impaired endothelium-dependent relaxation (EDR) in mesenteric arteries and lowered blood pressure of SHRs. Decreased AMP-activated protein kinase (AMPK) phosphorylation, elevated endoplasmic reticulum (ER) stress markers, increased reactive oxygen species (ROS), and reduction of nitric oxide (NO) production in mesenteric arteries of SHRs were also reversed by FSTL1 treatment. Ex vivo treatment with FSTL1 improved the impaired EDR in mesenteric arteries from SHRs and reversed tunicamycin (ER stress inducer)-induced ER stress and the impairment of EDR in mesenteric arteries from WKY rats. The effects of FSTL1 were abolished by cotreatment of compound C (AMPK inhibitor). CONCLUSIONS: These results suggest that FSTL1 prevents endothelial dysfunction in mesenteric arteries of SHRs through inhibiting ER stress and ROS and increasing NO production via activation of AMPK signaling.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Proteínas Quinasas Activadas por AMP/metabolismo , Folistatina/metabolismo , Folistatina/farmacología , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Proteínas Relacionadas con la Folistatina/farmacología , Endotelio Vascular , Arterias Mesentéricas , Estrés del Retículo Endoplásmico
20.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37824517

RESUMEN

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Asunto(s)
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrógeno/análisis , Antibacterianos , Bacterias/genética , Plantas , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA