Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(24): 16029-16042, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34179648

RESUMEN

This paper presents a simple strategy for manufacturing bifunctional electrocatalysts-graphene nanosheets (GNS) coated with an ultrafine NiCo-MOF as nanocomposites (denoted NiCo-MOF@GNS) having a N-doped defect-rich and abundant cavity structure through one-pool treatment of metal-organic frameworks (MOFs). The precursors included N-doped dodecahedron-like graphene nanosheets (GNS), in which the NiCo-MOF was encompassed within the inner cavities of the GNS (NiCo-MOF@GNS) at the end or middle portion of the tubular furnace with several graphene layers. Volatile imidazolate N x species were trapped by the NiCo-MOF nanosheets during the pyrolysis process, simultaneously inserting N atoms into the carbon matrix to achieve the defect-rich porous nanosheets and the abundantly porous cavity structure. With high durability, the as-prepared nanomaterials displayed simultaneously improved performance in the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), and photocatalysis. In particular, our material NiCo-MOF@GNS-700 exhibited excellent electrocatalytic activity, including a half-wave potential of 0.83 V (E ORR, 1/2), a low operating voltage of 1.53 V (E OER, 10) at 10 mA cm-2, a potential difference (ΔE) of 1.02 V between E OER, 10 and E ORR, 1/2 in 0.1 M KOH, and a low band gap of 2.61 eV. This remarkable behavior was due to the structure of the defect-rich porous carbon nanosheets and the synergistic impact of the NPs in the NiCo-MOF, the N-doped carbon, and NiCo-N x . Furthermore, the hollow structure enhanced the conductivity and stability. This useful archetypal template allows the construction of effective and stable bifunctional electrocatalysts, with potential for practical viability for energy conversion and storage.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923729

RESUMEN

A novel design and synthesis methodology is the most important consideration in the development of a superior electrocatalyst for improving the kinetics of oxygen electrode reactions, such as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in Li-O2 battery application. Herein, we demonstrate a glycine-assisted hydrothermal and probe sonication method for the synthesis of a mesoporous spherical La0.8Ce0.2Fe0.5Mn0.5O3 perovskite particle and embedded graphene nanosheet (LCFM(8255)-gly/GNS) composite and evaluate its bifunctional ORR/OER kinetics in Li-O2 battery application. The physicochemical characterization confirms that the as-formed LCFM(8255)-gly perovskite catalyst has a highly crystalline structure and mesoporous morphology with a large specific surface area. The LCFM(8255)-gly/GNS composite hybrid structure exhibits an improved onset potential and high current density toward ORR/OER in both aqueous and non-aqueous electrolytes. The LCFM(8255)-gly/GNS composite cathode (ca. 8475 mAh g-1) delivers a higher discharge capacity than the La0.5Ce0.5Fe0.5Mn0.5O3-gly/GNS cathode (ca. 5796 mAh g-1) in a Li-O2 battery at a current density of 100 mA g-1. Our results revealed that the composite's high electrochemical activity comes from the synergism of highly abundant oxygen vacancies and redox-active sites due to the Ce and Fe dopant in LaMnO3 and the excellent charge transfer characteristics of the graphene materials. The as-developed cathode catalyst performed appreciable cycle stability up to 55 cycles at a limited capacity of 1000 mAh g-1 based on conventional glass fiber separators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA