Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
Biomater Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238274

RESUMEN

Rapid and accurate detection of 7-methylguanine (m7Gua), a biomarker reflecting the degree of DNA methylation that occurs before or in the early stage of cancer, is of particular significance but remains a great challenge. Herein, a luminescent lanthanide-based covalent organic framework (Ln-COF) probe, namely DPA/Eu@ETTA-DHTA, is designed for the first time for the identification of m7Gua by assembling pyridine-2,6-dicarboxylic acid (DPA) as both an energy donor and a recognition molecule and Eu3+ ions as signal reporters into a stable COF matrix with high porosity and available binding sites. Significantly, the characteristic luminescence of Eu3+ ions can be turned on by the grafted DPA in the COF probe and effectively quenched by the addition of m7Gua via a competitive absorption process, thus achieving the sensing of m7Gua. Such a Ln-COF-based fluorescent platform presents high selectivity and a rapid response (<1 min) to m7Gua with a low detection limit (µM level) even in the presence of the main coexisting species in urine, allowing it to serve as a potentially practical probe for point-of-care monitoring of the level of m7Gua in human urine specimens. This study provides a convenient, time-saving, and economical approach for visual detection of m7Gua, and opens up new perspectives for the design of a luminescent COF-based probe for DNA methylation evaluation in diagnostics.

2.
J Am Chem Soc ; 146(37): 25451-25455, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225691

RESUMEN

A confined space preorganizes substrates, which substantially changes their chemical reactivity and selectivity; however, the performance as a reaction vessel is hampered by insensitivity to environmental changes. Here, we show a dynamic confined space formed by substrate grasping of an amphiphilic host with branched aromatic arms as an active molecular gripper capable of performing substrate grasping, macrocyclization, and product release acting as a macrocycle synthesizer. The confined reaction space is formed by the substrate grasping of the molecular gripper, which is further stabilized by gel formation. Confining a linear substrate in the closed form of the gripper triggers a spontaneous ring-forming reaction to release a macrocycle product by opening. The consecutive open-closed switching enables repetitive tasks to be performed with remarkable working efficiency.

3.
Mol Cancer ; 23(1): 202, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294747

RESUMEN

Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.


Asunto(s)
Metabolómica , Neoplasias , Microambiente Tumoral , Humanos , Metabolómica/métodos , Neoplasias/inmunología , Neoplasias/metabolismo , Microambiente Tumoral/inmunología , Animales , Metaboloma
4.
Genes Dis ; 11(6): 101281, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39281833

RESUMEN

Dysregulated calcium (Ca2+) signaling pathways are associated with tumor cell death and drug resistance. In non-excitable cells, such as hepatocellular carcinoma (HCC) cells, the primary pathway for Ca2+ influx is through stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE). Previous studies have demonstrated the involvement of STIM1-mediated SOCE in processes such as genesis, metastasis, and stem cell self-renewal of HCC. However, it remains unclear whether STIM1-mediated SOCE plays a role in developing acquired resistance to sorafenib in HCC patients. In this study, we established acquired sorafenib-resistant (SR) HCC cell lines by intermittently exposing them to increasing concentrations of sorafenib. Our results showed higher levels of STIM1 and stronger SOCE in SR cells compared with parental cells. Deleting STIM1 significantly enhanced sensitivity to sorafenib in SR cells, while overexpressing STIM1 promoted SR by activating SOCE. Mechanistically, STIM1 increased the transcription of SLC7A11 through the SOCE-CaN-NFAT pathway. Subsequently, up-regulated SLC7A11 increased glutathione synthesis, resulting in ferroptosis insensitivity and SR. Furthermore, combining the SOCE inhibitor SKF96365 with sorafenib significantly improved the sensitivity of SR cells to sorafenib both in vitro and in vivo. These findings suggest a potential strategy to overcome acquired resistance to sorafenib in HCC cells.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39141443

RESUMEN

Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem-cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-art predictive computational methods have facilitated the prediction of cancer stemness, currently there is no efficient resource that can meet various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at the bulk and single-cell levels. The resource integrates 8 robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five different aspects, including identifying the signature genes of cancer stemness, exploring the associations with cancer hallmarks, cellular states, the immune response, and communication with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding the downstream functional interpretation, including immune response as well as cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.

6.
Sci Data ; 11(1): 831, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090129

RESUMEN

Identification of tumor neoantigens is indispensable for the development of cancer immunotherapies. However, we are still lacking knowledge about the potential neoantigens derived from sequences outside protein-coding regions. Here, we comprehensively characterized the immunopeptidome landscape by integrating multi-omics data in acute myeloid leukemia (AML). Both canonical and non-canonical MHC-associated peptides (MAPs) in AML were identified. We found that the quality and characteristics of ncMAPs are comparable or superior to cMAPs, suggesting ncMAPs are indispensable sources for tumor neoantigens. We further proposed a computational framework to prioritize the neoantigens by integrating additional transcriptome and immunopeptidome in normal tissues. Notably, 6 of prioritized 13 neoantigens were derived from ncMAPs. The expressions of corresponding source genes are highly related to infiltrations of immune cells. Finally, a risk model was developed, which exhibited good performance for clinical prognosis in AML. Our findings expand potential cancer immunotherapy targets and provide in-depth insights into AML treatment, laying a new foundation for precision therapies in AML.


Asunto(s)
Antígenos de Neoplasias , Inmunoterapia , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Humanos , Antígenos de Neoplasias/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología
7.
Lung Cancer ; 195: 107925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146625

RESUMEN

OBJECTIVE: The reported impact of age on the effectiveness of emerging immunotherapies in patients with advanced non-small cell lung cancer (NSCLC) has been inconsistent in clinical trials, largely due to an underrepresentation of older individuals. This meta-analysis aimed to evaluate the efficacy of immune checkpoint inhibitor (ICI) in older patients with NSCLC. MATERIALS AND METHODS: The literature up to April 2024 was reviewed to identify articles meeting the criteria for inclusion. Hazard ratios (HRs) for overall survival (OS) across various age groups were examined. The ratio of HR (RHR) was computed and combined for each study. RESULTS: A preliminary search identified 118 articles, with 13 being phase II or III randomized clinical trials comparing the efficacy of nivolumab, avelumab, ipilimumab, pembrolizumab, atezolizumab, and chemotherapy with or without antiangiogenic therapy. The analysis revealed that the HR for OS was 0.75 (95 % CI: 0.70-0.80, P=0.080) in patients aged under 75 years and 0.87 (95 % CI: 0.74-1.01, P=0.913) in patients aged 75 years and older. The combined RHR for patients aged 75 years and above versus those aged under 75 years was 1.14 (95 % CI: 0.97-1.34, P=0.697). There was no significant difference in OS benefit between patients over 75 years and younger patients (P=0.105). Subgroup analyses indicated that the benefit of OS was consistent across all subgroups and age groups. CONCLUSIONS: Our investigation found no significant differences in the efficacy of immunotherapy for patients with NSCLC aged 75 years and older compared to those under 75 years old. This suggests that the efficacy of immunotherapy against NSCLC is consistent across age groups.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Anciano , Humanos , Factores de Edad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
8.
Ther Adv Med Oncol ; 16: 17588359241264730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091606

RESUMEN

Background: MET overexpression represents the most MET aberration in advanced non-small-cell lung cancer (NSCLC). However, except MET exon 14 (METex14) skipping mutation was recognized as a clinical biomarker, the role of MET overexpression as a predictive factor to MET inhibitor is not clear. Objectives: The purpose of the pooled analysis is to explore the safety and efficiency of gumarontinib, a highly selective oral MET inhibitor, in drive-gene negative NSCLC patients with MET overexpression. Design and methods: NSCLC patients with MET overexpression [immunohistochemistry (IHC) ⩾3+ as determined by central laboratory] not carrying epidermal growth factor receptor mutation, METex14 skipping mutation or other known drive gene alternations who received Gumarontinib 300 mg QD from two single arm studies were selected and pooled for the analysis. The efficacy [objective response rate (ORR), disease control rate (DCR), duration of response, progression-free survival (PFS) and overall survival (OS)] and safety [treatment emergent adverse event (TEAE), treatment related AE (TRAE) and serious AE (SAE) were assessed. Results: A total of 32 patients with MET overexpression were included in the analysis, including 12 treatment naïve patients who refused or were unsuitable for chemotherapy, and 20 pre-treated patients who received ⩾1 lines of prior systemic anti-tumour therapies. Overall, the ORR was 37.5% [95% confidence interval (CI): 21.1-56.3%], the DCR was 81.3% (95% CI: 63.6-92.8%), median PFS (mPFS) and median OS (mOS) were 6.9 month (95% CI: 3.6-9.7) and 17.0 month (95% CI: 10.3-not evaluable), respectively. The most common AEs were oedema (59.4%), hypoalbuminaemia (40.6%), alanine aminotransferase increased (31.3%). Conclusion: Gumarontinib showed promising antitumour activity in driver-gene negative locally advanced or metastatic NSCLC patients with MET overexpression, which warranted a further clinical trial. Trial registration: ClinicalTrials.gov identifier: NCT03457532; NCT04270591.

9.
Inflamm Res ; 73(9): 1493-1510, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981913

RESUMEN

OBJECTIVE AND DESIGN: Compelling evidence indicates that dysregulated macrophages may play a key role in driving inflammation in inflammatory bowel disease (IBD). Fibroblast growth factor (FGF)-19, which is secreted by ileal enterocytes in response to bile acids, has been found to be significantly lower in IBD patients compared to healthy individuals, and is negatively correlated with the severity of diarrhea. This study aims to explore the potential impact of FGF19 signaling on macrophage polarization and its involvement in the pathogenesis of IBD. METHODS: The dextran sulfate sodium (DSS)-induced mouse colitis model was utilized to replicate the pathology of human IBD. Mice were created with a conditional knockout of FGFR4 (a specific receptor of FGF19) in myeloid cells, as well as mice that overexpressing FGF19 specifically in the liver. The severity of colitis was measured using the disease activity index (DAI) and histopathological staining. Various techniques such as Western Blotting, quantitative PCR, flow cytometry, and ELISA were employed to assess polarization and the expression of inflammatory genes. RESULTS: Myeloid-specific FGFR4 deficiency exacerbated colitis in the DSS mouse model. Deletion or inhibition of FGFR4 in bone marrow-derived macrophages (BMDMs) skewed macrophages towards M1 polarization. Analysis of transcriptome sequencing data revealed that FGFR4 deletion in macrophages significantly increased the activity of the complement pathway, leading to an enhanced inflammatory response triggered by LPS. Mechanistically, FGFR4-knockout in macrophages promoted complement activation and inflammatory response by upregulating the nuclear factor-κB (NF-κB)-pentraxin3 (PTX3) pathway. Additionally, FGF19 suppressed these pathways and reduced inflammatory response by activating FGFR4 in inflammatory macrophages. Liver-specific overexpression of FGF19 also mitigated inflammatory responses induced by DSS in vivo. CONCLUSION: Our study highlights the significance of FGF19-FGFR4 signaling in macrophage polarization and the pathogenesis of IBD, offering a potential new therapeutic target for IBD.


Asunto(s)
Colitis , Sulfato de Dextran , Factores de Crecimiento de Fibroblastos , Macrófagos , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Animales , Masculino , Ratones , Colitis/inducido químicamente , Colitis/patología , Colitis/inmunología , Colon/patología , Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/patología , Hígado/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
10.
Heliyon ; 10(11): e32417, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961940

RESUMEN

In order to comprehend the dissimilarities in tobacco quality between Canada and Yunnan, a comparison of the aroma components was conducted using GC-MS and HPLC analysis, coupled with orthogonal partial least squares discriminant analysis (OPLS-DA). The study revealed the detection of a total of 81 aroma components and 22 non-volatile components in both varieties of tobacco leaves. Specifically, there were 102 components of Canada tobacco leaves and 103 components of Yunnan tobacco leaves. Subsequently, a screening was performed on these two types of tobacco leaves, identifying 51 differential components, which accounted for approximately 49.5 % of the overall components detected. Among these, Canada tobacco exhibited a higher concentration of 22 components, comprising roughly 36.4 % of the total, which were primarily composed of semi-volatile organic acids and sesquiterpenes. On the other hand, Yunnan tobacco was characterized by a comparatively higher content of 43 components, constituting approximately 63.6 %, including fatty acid esters, phenols, diterpenes, sugars, and amino acids. Comparatively, Canada tobacco demonstrated elevated levels of fatty acids and sesquiterpenes, while the content of fatty acid esters and diterpenes was relatively lower. These distinctions in aroma components potentially contribute to the varied sensory aroma profiles exhibited by the two types of tobacco.

11.
Theranostics ; 14(9): 3470-3485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948063

RESUMEN

Background: Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC), but acquired resistance during the treatment greatly limits its clinical efficiency. Lipid metabolic disorder plays an important role in hepatocarcinogenesis. However, whether and how lipid metabolic reprogramming regulates sorafenib resistance of HCC cells remains vague. Methods: Sorafenib resistant HCC cells were established by continuous induction. UHPLC-MS/MS, proteomics, and flow cytometry were used to assess the lipid metabolism. ChIP and western blot were used to reflect the interaction of signal transducer and activator of transcription 3 (STAT3) with glycerol-3-phosphate acyltransferase 3 (GPAT3). Gain- and loss-of function studies were applied to explore the mechanism driving sorafenib resistance of HCC. Flow cytometry and CCK8 in vitro, and tumor size in vivo were used to evaluate the sorafenib sensitivity of HCC cells. Results: Our metabolome data revealed a significant enrichment of triglycerides in sorafenib-resistant HCC cells. Further analysis using proteomics and genomics techniques demonstrated a significant increase in the expression of GPAT3 in the sorafenib-resistant groups, which was found to be dependent on the activation of STAT3. The restoration of GPAT3 resensitized HCC cells to sorafenib, while overexpression of GPAT3 led to insensitivity to sorafenib. Mechanistically, GPAT3 upregulation increased triglyceride synthesis, which in turn stimulated the NF-κB/Bcl2 signaling pathway, resulting in apoptosis tolerance upon sorafenib treatment. Furthermore, our in vitro and in vivo studies revealed that pan-GPAT inhibitors effectively reversed sorafenib resistance in HCC cells. Conclusions: Our data demonstrate that GPAT3 elevation in HCC cells reprograms triglyceride metabolism which contributes to acquired resistance to sorafenib, which suggests GPAT3 as a potential target for enhancing the sensitivity of HCC to sorafenib.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Sorafenib , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Animales , Factor de Transcripción STAT3/metabolismo , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Metabolismo de los Lípidos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Artículo en Inglés | MEDLINE | ID: mdl-38982693

RESUMEN

INTRODUCTION: Icotinib and almonertinib are efficacious for non-small cell lung cancer (NSCLC) factor patients with epidermal growth receptor (EGFR)-mutation. Patients who previously used EGFR tyrosine kinase inhibitor (EGFR TKI) may switch to another one due to the adverse events. CASE PRESENTATION: Here, we report a case of a 73-year-old male patient with advanced lung adenocarcinoma in which an EGFR (exon 21 L858R substitution) was found. Icotinib (125mg three times daily) was administered initially. He achieved partial response two months later but developed acute interstitial lung disease (grade 2) with dry cough and chest tightness five months later. Icotinib was discontinued, and treatment with methylprednisolone improved the interstitial lung disease. Chemotherapy with pemetrexed, carboplatin, and bevacizumab was initiated as subsequent therapy. Considering the effectiveness of EGFR-TKIs, we decided cautiously to rechallenge the third-generation TKI almonertinib administration. The patient successfully received almonertinib for almost one year without the recurrence of interstitial lung disease and tumor progression. ILD was an infrequent but often life-threatening reaction associated with icotinib. CONCLUSION: This is the first reported case of successful switching from icotinib to another EGFR TKI because of interstitial lung disease associated with icotinib, suggesting that EGFR-TKIs rechallenge because of adverse events rather than progression might provide a significant benefit in patients with EGFR driver positive NSCLC.

13.
J Immunother Cancer ; 12(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977328

RESUMEN

BACKGROUND: While anti-programmed cell death protein-1 (PD-1) monotherapy has shown effectiveness in treating lung cancer, its response rate is limited to approximately 20%. Recent research suggests that abnormal lipid metabolism in patients with lung adenocarcinoma may hinder the efficacy of anti-PD-1 monotherapy. METHODS: Here, we delved into the patterns of lipid metabolism in patients with The Cancer Genome Atlas (TCGA)-lung adenocarcinoma (LUAD) and their correlation with the immune microenvironment's cellular infiltration characteristics of the tumor. Furthermore, the lipid metabolism score (LMS) system was constructed, and based on the LMS system, we further performed screening for potential agents targeting lipid metabolism. The mechanism of MK1775 was further validated using RNA sequencing, co-culture technology, and in vivo experiments. RESULTS: We developed an LSM system and identified a potential sensitizing agent, MK1775, which targets lipid metabolism and enhances the effects of anti-PD-1 treatment. Our results demonstrate that MK1775 inhibits tumor progression by influencing lipid crosstalk between tumor cells and tumor-associated macrophages and CD8+T cells, thereby increasing the effectiveness of anti-PD-1 treatment. Further, we found that MK1775 inhibited the phosphatidylinositol 3-kinase(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which on one hand downregulated FASN-mediated synthesis of fatty acids (FAs) to inhibit fatty acid oxidation of tumor-associated macrophages, and on the other hand, promoted IRF-mediated secretion of CXCL10 and CXCL11 to facilitate the infiltration of CD8+ T cells. CONCLUSIONS: These findings emphasize the important role of lipid metabolism in shaping the complex tumor microenvironment. By manipulating the intricate intricacies of lipid metabolism within the tumor microenvironment, we can uncover and develop promising strategies to sensitize immunotherapy, potentially revolutionizing cancer treatment approaches.


Asunto(s)
Adenocarcinoma del Pulmón , Inmunoterapia , Metabolismo de los Lípidos , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/inmunología , Inmunoterapia/métodos , Ratones , Animales , Microambiente Tumoral , Línea Celular Tumoral
14.
MedComm (2020) ; 5(8): e671, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39070179

RESUMEN

Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.

15.
Immunotargets Ther ; 13: 349-366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050484

RESUMEN

Background: The heterogeneity and dynamic changes of endometrial cells have a significant impact on health as they determine the normal function of the endometrium during the menstrual cycle. Dysfunction of the endometrium can lead to the occurrence of various gynecological diseases. Therefore, deconvolution of immune microenvironment that drives transcriptional programs throughout the menstrual cycle is key to understand regulatory biology of endometrium. Methods: Herein, we comprehensively analyzed single-cell transcriptome of 59,397 cells across ten human endometrium samples and revealed the dynamic cellular heterogeneity throughout the menstrual cycle. Results: We identified two perivascular cell subtypes, four epithelial subtypes and four fibroblast cell types in endometrium. Moreover, we inferred the cell type-specific transcription factor (TF) activities and linked critical TFs to transcriptional output of diverse immune cell types, highlighting the importance of transcriptional regulation in endometrium. Dynamic interactions between various types of cells in endometrium contribute to a range of biological pathways regulating differentiation of secretory. Integration of the molecular biomarkers identified in endometrium and bulk transcriptome of 535 endometrial cancers (EC), we revealed five RNA-based molecular subtypes of EC with highly intratumoral heterogeneity and different clinical manifestations. Mechanism analysis uncovered clinically relevant pathways for pathogenesis of EC. Conclusion: In summary, our results revealed the dynamic immune microenvironment of endometrium and provided novel insights into future development of RNA-based treatments for endometriosis and endometrial carcinoma.

16.
Small ; : e2403777, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039987

RESUMEN

Bicontinuous porous materials, which possess 3D interconnected network and pore channels facilitating the mass diffusion to the interior of materials, have demonstrated their promising potentials in a large variety of research fields. However, facile construction of such complex and delicate structures is still challenging. Here, an amine-mediated polymerization-induced fusion assembly strategy is reported for synthesizing polyphenol-based bicontinuous porous spheres with various pore structures. Specifically, the fusion of pore-generating template observed by TEM promotes the development of bicontinuous porous networks that are confirmed by 3D reconstruction. Furthermore, the resultant bicontinuous porous carbon particles after pyrolysis, with a diameter of ≈600 nm, a high accessible surface area of 359 m2 g-1, and a large pore size of 40-150 nm manifest enhanced performance toward the catalytic degradation of sulfamethazine in water decontamination. The present study expands the toolbox of interfacial tension-solvent-dependent porous spheres while providing new insight into their structure-property relationships.

17.
J Int Med Res ; 52(7): 3000605241263729, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39068531

RESUMEN

Platelet-rich plasma (PRP), a blood product containing high concentrations of platelets, has been increasingly used for the treatment of a number of diseases because of its anti-inflammatory and regenerative properties. PRP is generally obtained from the patient's own peripheral blood when used in clinical applications, but allogeneic PRP extracted from umbilical cord blood has also attracted attention due to its unique advantages. The main purpose of this narrative review was to summarize the research and clinical application of cord blood-derived PRP (CB-PRP) in the treatment of diseases up to April 2024. This review also discusses the differences between CB-PRP and autologous PRP (A-PRP). A thorough search of PubMed® and Clinicaltrials.gov identified 13 articles and four clinical trials. To date, CB-PRP has been primarily studied in the fields of orthopaedics, dermatology, neurology, obstetrics/gynaecology and ophthalmology. This is likely to be because this research is relatively novel. Considering the differences between the characteristics of A-PRP and CB-PRP, it is thought that CB-PRP might hold more promise for broader applications in the future.


Asunto(s)
Sangre Fetal , Plasma Rico en Plaquetas , Humanos , Sangre Fetal/citología
18.
Artículo en Inglés | MEDLINE | ID: mdl-39067031

RESUMEN

BACKGROUND: Arthroscopy-assisted closed reduction and percutaneous internal fixation is a minimally invasive technique for medial malleolus fracture treatment. The purpose of the study was to assess the quality and functional outcomes of this technique. METHODS: Seventy-eight patients with combined medial malleolus fractures were treated with arthroscopy-assisted closed reduction and percutaneous screw fixation technique. The surgical procedure was described in detail; the clinical efficacy of this method was evaluated in terms of time of operation, postoperative complications, and fracture healing time; and functional outcomes were analyzed. RESULTS: All of the patients were followed up for a minimum of 12 months without complications of the medial malleolus wound, and all of the medial malleolus fractures healed within 6 to 8 weeks. At the last follow-up, the visual analog scale scores ranged from 0 to 3 and the American Orthopaedic Foot and Ankle Society ankle and hindfoot function scores ranged from 75 to 95. CONCLUSIONS: Arthroscopy-assisted closed reduction and percutaneous internal fixation makes the treatment of medial malleolus fractures less invasive compared with traditional surgical methods and allows simultaneous exploration and management of the articular surface.


Asunto(s)
Fracturas de Tobillo , Artroscopía , Fijación Interna de Fracturas , Humanos , Artroscopía/métodos , Fijación Interna de Fracturas/métodos , Masculino , Fracturas de Tobillo/cirugía , Femenino , Adulto , Persona de Mediana Edad , Tornillos Óseos , Resultado del Tratamiento , Curación de Fractura/fisiología , Adulto Joven , Estudios Retrospectivos , Reducción Cerrada/métodos , Anciano , Estudios de Seguimiento , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos
19.
Front Immunol ; 15: 1390453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962005

RESUMEN

Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Macrófagos , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Activación de Macrófagos/inmunología , Inflamación/inmunología , Inflamación/metabolismo
20.
Sci Rep ; 14(1): 16741, 2024 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033211

RESUMEN

Diabetes retinopathy (DR) is a critical clinical disease with that causes irreversible visual damage in adults, and may even lead to permanent blindness in serious cases. Early identification and treatment of DR is critical. Our aim was to train and externally validate a prediction nomogram for early prediction of DR. 2381 patients with type 2 diabetes mellitus (T2DM) were retrospective study from the First Affiliated Hospital of Xinjiang Medical University in Xinjiang, China, hospitalised between Jan 1, 2019 and Jun 30, 2022. 962 patients with T2DM from the Suzhou BenQ Hospital in Jiangsu, China hospitalised between Jul 1, 2020 to Jun 30, 2022 were considered for external validation. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression was performed to identify independent predictors and establish a nomogram to predict the occurrence of DR. The performance of the nomogram was evaluated using a receiver operating characteristic curve (ROC), a calibration curve, and decision curve analysis (DCA). Neutrophil, 25-hydroxyvitamin D3 [25(OH)D3], Duration of T2DM, hemoglobin A1c (HbA1c), and Apolipoprotein A1 (ApoA1) were used to establish a nomogram model for predicting the risk of DR. In the development and external validation groups, the areas under the curve of the nomogram constructed from the above five factors were 0.834 (95%CI 0.820-0.849) and 0.851 (95%CI 0.829-0.874), respectively. The nomogram demonstrated excellent performance in the calibration curve and DCA. This research has developed and externally verified that the nomograph model shows a good predictive ability in assessing DR risk in people with type 2 diabetes. The application of this model will help clinicians to intervene early, thus effectively reducing the incidence rate and mortality of DR in the future, and has far-reaching significance in improving the long-term health prognosis of diabetes patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Nomogramas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Curva ROC , Factores de Riesgo , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA