Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sensors (Basel) ; 24(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39338768

RESUMEN

To address the issue of spatial resolution limitations in traditional Brillouin optical time-domain analysis systems due to phonon lifetime constraints, we employed pre-pumped pulse technology. Additionally, to mitigate the double-peak phenomenon observed in pre-pumped Brillouin optical time-domain analysis systems, we implemented a two-sided band interference method to reduce the linewidth of the double-peak fitting. We conducted bending measurements on three eccentric cores and intermediate cores spaced 120° apart. Our results demonstrate that the system described in this paper can achieve a spatial resolution of 30 cm, with bimodal linewidths of 23.1 MHz and 16.0 MHz. Using the parallel transmission frame algorithm, we determined the curvature of a seven-core fiber with a curvature diameter of approximately 10 cm to be 20.67 m-1, with an error margin of 3.2%.

2.
Nat Chem Biol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858530

RESUMEN

The copy number of genes in chromosomes can be modified by chromosomal integration to construct efficient microbial cell factories but the resulting genetic systems are prone to failure or instability from triggering homologous recombination in repetitive DNA sequences. Finding the optimal copy number of each gene in a pathway is also time and labor intensive. To overcome these challenges, we applied a multiple nonrepetitive coding sequence calculator that generates sets of coding DNA sequence (CDS) variants. A machine learning method was developed to calculate the optimal copy number combination of genes in a pathway. We obtained an engineered Yarrowia lipolytica strain for eicosapentaenoic acid biosynthesis in 6 months, producing the highest titer of 27.5 g l-1 in a 50-liter bioreactor. Moreover, the lycopene production in Escherichia coli was also greatly improved. Importantly, all engineered strains of Y. lipolytica, E. coli and Saccharomyces cerevisiae constructed with nonrepetitive CDSs maintained genetic stability.

3.
Opt Express ; 32(7): 12708-12723, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571086

RESUMEN

Based on the theory of the microwave photonic filter (MPF), to our knowledge, a novel fiber Bragg grating (FBG) wavelength demodulation method based on time-domain detection is proposed. The method uses VNA (vector network analyzer) to measure the S21 parameter of the sensor system, and converts them to the time-domain through inverse discrete Fourier transform (IDFT), The wavelength demodulation and positioning of FBG can be realized by measuring the amplitude and position of the time-domain peak. In order to improve the number of FBG multiplexes, a method is proposed to eliminate the effect of spectrum overlap by normalization in the case of two FBGs and three FBGs. The experimental results show that the temperature sensitivity is 0.00503 RAC/°C, the positioning resolution of the system is 1.25 cm, and the limit of the wavelength difference between two FBGs allowed by the system is 0.25 nm. This method has the advantages of high demodulation precision, strong multiplexing ability and high precision positioning, and has broad application prospects.

4.
J Assist Reprod Genet ; 40(10): 2427-2437, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37589858

RESUMEN

BACKGROUND: Age-related diminished ovarian reserve (DOR) is not absolute. Some advanced maternal age (AMA) still have normal ovarian reserve (NOR) and often show better pregnancy outcomes. Exploring the transcriptomic profile of granulosa cells (GCs) in AMA could lead to new ideas for mitigating age-related diminished ovarian reserve. AIM: This study aimed to analyze the transcriptomic profile of GCs in AMA with different ovarian reserve. RESULTS: In total, 6273 statistically significant differential expression genes (DEGs) (|log2fc|> 1, q < 0.05) were screened from the two groups, among which 3436 genes were upregulated, and 2837 genes were downregulated in the DOR group. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the potential functions of dysregulated genes in AMA with DOR or NOR were predicted. The GO enrichment analysis revealed that the DEGs were mainly enriched in obsolete oxidation-reduction process, mitochondrion, metal ion binding, ATP binding, etc. The KEGG pathway enrichment analysis revealed that the above-mentioned DEGs were mainly enriched in ferroptosis, regulation of actin cytoskeleton, oxidative phosphorylation, etc. Meanwhile, verification of the mRNA expression levels of DEGs revealed the possible involvement of "ferroptosis" in age-related diminished ovarian reserve. CONCLUSIONS: From a new clinical perspective, we presented the first data showing the transcriptomic profile in GCs between AMA with different ovarian reserve. At the same time, we identified the role of ferroptosis in the GCs of AMA, providing a new biological basis for studying ovarian aging and improving pregnancy outcomes of AMA.


Asunto(s)
Enfermedades del Ovario , Reserva Ovárica , Embarazo , Humanos , Femenino , Transcriptoma/genética , Edad Materna , Reserva Ovárica/genética , Perfilación de la Expresión Génica , Células de la Granulosa
5.
Front Endocrinol (Lausanne) ; 14: 1068141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742378

RESUMEN

Objective: To evaluate different starting doses of recombinant human follicle-stimulating hormone (rhFSH) on pregnancy outcomes for patients with normal ovarian reserve during gonadotropin- releasing hormone antagonist (GnRH-ant) protocol-controlled ovarian stimulation of in vitro fertilization (IVF) cycles. Methods: In this retrospective study, a total of 1138 patients undergoing IVF cycles following the GnRH-ant protocol were enrolled. Patients were divided into two groups according to the starting dose of rhFSH. 617 patients received a starting dose of rhFSH of 150 IU, and 521 patients received a starting dose of rhFSH of 225 IU. We compared demographic characteristics, ovarian stimulation and embryological characteristics, and pregnancy and birth outcomes between the two groups. Multivariate logistic regression analysis was performed to examine the possible effects of the known potential confounding factors on pregnancy outcomes. Results: The number of oocytes retrieved in the 150 IU rhFSH group was significantly lower than those in the 225 IU rhFSH group. There was no significant difference between the two groups referring to embryological characteristics. The proportion of fresh embryo transfer in the 150 IU rhFSH group was significantly higher than that in the 225 IU rhFSH group (48.30% vs. 40.90%), and there was no difference in the risk of ovarian hyperstimulation syndrome and pregnancy outcomes between the two groups. Conclusions: In conclusion, the starting dose of rhFSH of 150 IU for ovarian stimulation has a similar pregnancy outcome as starting dose of rhFSH of 225 IU in GnRH-ant protocol for patients with normal ovarian reserve. Considering the potential cost-effectiveness and shorter time to live birth, the starting dose of rhFSH of 150 IU may be more suitable than 225 IU.


Asunto(s)
Hormona Folículo Estimulante , Reserva Ovárica , Femenino , Embarazo , Humanos , Hormona Liberadora de Gonadotropina , Estudios Retrospectivos , Hormona Folículo Estimulante Humana , Antagonistas de Hormonas
6.
Neurol India ; 70(5): 2047-2052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352607

RESUMEN

Background: Hypertensive intracerebral hemorrhage (HICH) seriously endangers the quality of life of patients and can even lead to death. Craniotomy is a common treatment method for HICH. Objective: The aim of this study was to investigate the efficacy of two different sizes of craniotomy in patients with HICH, as well as to evaluate their effects on C-reactive protein (CRP) and blood lactate levels. Materials and Methods: A total of 72 patients with HICH in the basal ganglia were operated on in our hospital from February 2017 to March 2019 and randomly divided into two groups: the small bone window (SBW) group (n = 37) and the large bone flap group (n = 35). The curative effects of the two kinds of operations were evaluated by the length of operation, the days of hospitalization, the rate of hematoma clearance, the rate of rebleeding, and the incidence of complications. Additionally, the levels of CRP and lactate were compared between the two groups. Results: The results showed that the average intraoperative time, hospital stay, rebleeding rate, and postoperative complications of patients in the SBW group were less than those in the large bone flap group. Moreover, the number of patients in the SBW group with good postoperative recovery, including class V and class IV, was higher than that in the large bone flap group. Minimally invasive craniotomy with SBW reduced the lactic acid and CRP levels more quickly than the large bone flap group. Conclusions: An SBW was superior to a large bone flap in terms of the operative effect and lactate and CRP levels. It is concluded that an SBW has significant advantages over a large bone flap.


Asunto(s)
Hemorragia Intracraneal Hipertensiva , Humanos , Hemorragia Intracraneal Hipertensiva/cirugía , Hemorragia Intracraneal Hipertensiva/complicaciones , Proteína C-Reactiva , Ácido Láctico , Calidad de Vida , Resultado del Tratamiento , Estudios Retrospectivos , Craneotomía/métodos , Ganglios Basales/cirugía
7.
Sensors (Basel) ; 22(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36298233

RESUMEN

A stabilized narrow-linewidth random fiber laser for strain detection, based on a three-grating ring (TGR) resonator and half-open-cavity structure, is proposed and investigated experimentally. The half-open-cavity structure proved to provide double optical gain of erbium-doped fiber, which was beneficial to increase the photon lifetime as well as further narrow the linewidth. Meanwhile, the stability and frequency noise of narrow lasing output was improved by suppressing the competition-induced undesired residual random lasing modes with the TGR resonator. The TGR resonator is composed of a double-cavity fiber Bragg grating Fabry-Perot (FBG-FP) interferometer, a section of single-mode fiber, and a circulator. The specially designed double-cavity FBG-FP interferometer embedded in the TGR resonator acted as the strain-sensing element and improved the resolution of the dynamic strain. A stable ultra-narrow linewidth of about 205 Hz was obtained. The frequency noise was reduced to about 2 Hz/√Hz. A high dynamic strain measuring resolution of 35 femto-strain (fε)/√Hz was achieved.


Asunto(s)
Erbio , Tecnología de Fibra Óptica , Erbio/química , Análisis de Falla de Equipo , Diseño de Equipo , Rayos Láser
8.
Opt Express ; 30(5): 7918-7927, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299544

RESUMEN

The efficient manipulation of light-matter interactions in subwavelength all-dielectric nanostructures offers a unique opportunity for the design of novel low-loss visible- and telecom-range nanoantennas for light routing applications. Several studies have achieved longitudinal and transverse light scattering with a proper amplitude and phase balance among the multipole moments excited in dielectric nanoantennas. However, they only involve the interaction between electric dipole, magnetic dipole, and up to the electric quadrupole. Here, we extend and demonstrate a unidirectional transverse light scattering in a V-shaped silicon nanoantenna that involves the balance up to the magnetic quadrupole moment. Based on the long-wavelength approximation and exact multipole decomposition analysis, we find the interference conditions needed for near-unity unidirectional transverse light scattering along with near-zero scattering in the opposite direction. These interference conditions involve relative amplitude and phases of the electromagnetic dipoles and quadrupoles supported by the silicon nanoantenna. The conditions can be applied for the development of either polarization- or wavelength- dependent light routing on a V-shaped silicon and plasmonic nanoantennas.

9.
Micromachines (Basel) ; 13(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35334671

RESUMEN

Creep behavior and fatigue life are important performance indexes that affect the long-term stability of resistive strain gauges. The resistive strain gauges, fabricated with wet etching and resistance trimming, present micro-morphology such as textures and uneven edges on the surface and side-wall profile of sensitive grids. This paper observed the micro-morphology of the sensitive grids by microscope and analyzed its range of geometric dimensions. A sine function was used to establish equivalent geometric models for the surface textures and side-wall profile. Based on time hardening theory and the S-N curve, the dependence of micro-morphology of metal resistive strain gauges on creep behavior and fatigue life was studied. The results indicate that the roughness of micro-morphology has an influence on creep behavior and fatigue life. The surface textures and side-wall profile lead to the increase of creep strain and the decrease of fatigue life in varying degrees. When 60% of the ultimate stress of the strain gauges is loaded, the average creep strain in steady-state calculated by the maximum roughness of the side-wall profile reaches up to 6.95 times that of the perfect flat surface. Under the condition of loading 70% of the ultimate stress and the same roughness, the fatigue life led by side-wall profile could be reduced to 1/25 of the textured surface. The obtained achievements promote an understanding for optimizing the fabrication process of resistive strain gauges as well as developing high-precision and long-life force sensors.

10.
Micromachines (Basel) ; 13(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35208404

RESUMEN

The effect of micro-morphology of resistive strain gauges on gauge factor was investigated numerically and experimentally. Based on the observed dimensional parameters of various commercial resistive strain gauges, a modeling method had been proposed to reconstruct the rough sidewall on the sensitive grids. Both the amplitude and period of sidewall profiles are normalized by the sensitive grid width. The relative resistance change of the strain gauge model with varying sidewall profiles was calculated. The results indicate that the micro-morphology on the sidewall profile led to the deviation of the relative resistance change and the decrease in gauge factor. To verify these conclusions, two groups of the strain gauge samples with different qualities of sidewall profiles have been manufactured, and both their relative resistance changes and gauge factors were measured by a testing apparatus for strain gauge parameters. It turned out that the experimental results are also consistent with the simulations. Under the loading strain within 1000 µm/m, the average gauge factors of these two groups of samples are 2.126 and 2.106, respectively, the samples with rougher profiles have lower values in gauge factors. The reduction in the gauge factor decreases the sensitivity by 2.0%. Our work shows that the sidewall micro-morphology on sensitive grids plays a role in the change of the gauge factor. The observed phenomena help derive correction methods for strain gauge measurements and predict the measurement errors coming from the local and global reinforcement effects.

11.
Opt Express ; 29(16): 24846-24860, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614831

RESUMEN

Optical fiber sensing technology plays an important role in the application of the sensing layer of the Internet of Things. The core of this technology is the demodulation of the fiber Bragg grating (FBG) sensing system. Since the FBG sensor utilizes the wavelength change to respond to the measured size, it is of great significance to improve the accuracy of the FBG wavelength demodulation. However, the demodulation performance of the current FBG wavelength demodulation method still has much room for improvement in terms of accuracy and stability. To this end, we propose a composite gas cell demodulation scheme based on spectrum correction and data fusion by using differential photodetectors, fitting extrapolation, data fusion methods, etc. The issue of low demodulation accuracy arising due to noise, temperature drift, spectral distortion, etc., was addressed to improve the demodulation performance of the FBG. In the experiment, four FBGs with different center wavelengths were used to verify their demodulation accuracy in the range of 1510-1590 nm. The maximum repeatability error of the FBG wavelength was measured to be 2.51 pm, and the linearity was as high as 99.9% or more; under the working environment of -20 °C to 60 °C, the maximum full-scale error did not exceed ±1.71 pm, which is improved by 54.3% compared with the traditional method.

12.
Front Cell Dev Biol ; 9: 701525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422823

RESUMEN

Prolonged chronic wound healing not only places great stress on patients but also increase the health care burden. Fortunately, the emergence of tissue-engineered dressings has provided a potential solution for these patients. Recently, the relationship between the wound microenvironment and wound healing has been gradually clarified. Therefore, the state of wounds can be roughly ascertained by monitoring the microenvironment in real time. Here, we designed a three-layer integrated smart dressing, including a biomimetic nanofibre membrane, microenvironment sensor and ß-cyclodextrin-containing gelatine methacryloyl (GelMA + ß-cd) UV-crosslinked hydrogel. The hydrogel helped increase the expression of vascular endothelial growth factor (VEGF) through hypoxia-inducible factor-1α (HIF-1α) to promote neovascularization and wound healing. The microenvironment sensor, combined with the biological dressings, exhibited satisfactory measurement accuracy, stability, durability and biocompatibility. A BLE4.0 antenna was used to receive, display and upload wound microenvironment data in real time. Such integrated smart dressings can not only achieve biological functions but also monitor changes in the wound microenvironment in real time. These dressings can overcome the challenge of not knowing the state of the wound during the healing process and provide support for clinical work.

13.
Microb Biotechnol ; 14(4): 1566-1579, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33945203

RESUMEN

Wound infection is a challenging clinical problem that imposes substantial economic and psychological burdens on patients. However, the wound covered by a dressing is in an 'unknown' state. Recently, researchers have focused on understanding the condition of the wound without removing the dressing. Here, we presented a flexible integrated sensing platform (FISP) that can monitor multiple indicators, including local temperature. The platform consists of a flexible sensor chip (FSC), a controlled printed circuit board (CPCB) and a customized application installed on a smartphone that can receive and display data from the sensor chip through Bluetooth Low Energy 4.0 (BLE4.0) and upload real-time wound information. This device exhibits satisfactory measurement accuracy, stability, durability, skin compliance and biocompatibility. It was applied to infected wounds on the back of rabbits to reveal the temperature changes characteristic of wounds infected with different bacteria, and this information was compared with the changes in the core body temperature of animals. We found differences in the temperature among wounds infected with different pathogens and the temperature of the wound infection occurred earlier than the change in anal temperature. The combined application of the FISP and dressings might help identify the 'unknown' state of wounds in the clinic.


Asunto(s)
Vendajes , Animales , Humanos , Conejos , Temperatura
14.
Artículo en Inglés | MEDLINE | ID: mdl-33523808

RESUMEN

Conventional electromagnetic acoustic transducers (EMATs) are generally only used to generate and detect guided waves with a single wavelength, which increases their sensitivity at that particular wavelength but limits their application scenarios and the accuracy of defect assessment. This article proposes a design method for multiwavelength EMATs based on spatial-domain harmonic control. First, the EMAT model is analyzed, where it is then outlined that the eddy-current density distribution of the specimen is equivalent to the spatial low-pass filtering of the coil-current density distribution. This shows that the multiwavelength guided waves can be achieved as long as the spatial distribution of the coil-current density contains those multiple harmonics that are desired. It is then proposed that the structure of the EMAT coil is equivalent to the spatial sampled pulse sequences of a spatial signal. The coil parameter design based on pulse modulation technology is proposed. Taking a dual-wavelength EMAT design for Lamb waves as an example, details of the coil parameter design are presented. The simulation and experiment with the dual-wavelength EMAT proved the correctness of the proposed method. Finally, an experiment with a three-wavelength EMAT demonstrated the feasibility of the proposed method in designing multiwavelength EMATs.

15.
Front Immunol ; 11: 564099, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329526

RESUMEN

Background: The administration of second- or third-generation anti-CD19 chimeric antigen receptor (CAR) T cells has remarkably improved the survival of patients with relapsed or refractory B cell malignancies. However, there are limited clinical results from fourth-generation CAR-T cell therapy, and the factors affecting response rate and survival have not been fully determined. Methods: Lymphoma patients with progression or relapse after intensive treatments, including hematopoietic stem cell transplantation, and life expectancy >2 months were enrolled in the study. Peripheral lymphocytes were collected through apheresis, and magnetically selected T cells were lentivirally transduced with a 4th-generation CAR featuring an anti-CD19 CAR and the iCasp9 suicide switch (4SCAR19). The patients received 4SCAR19 T cell infusion after approximately seven days of expansion and a conditioning regimen comprising cyclophosphamide/fludarabine. The efficacy, safety, and risk factors were evaluated. Results: A total of 21 patients with relapsed/refractory B cell non-Hodgkin lymphoma were enrolled and received 4SCAR19 T cell infusions at a median dose of 8.9×105 CAR-T cells/kg. The overall response rate was 67% [95% confidence interval (CI), 43 to 85], with 43% of patients achieving a complete response and 24% having a partial response. The overall and complete response rates were 58 and 33% in the diffuse large B-cell lymphoma (DLBCL) group and 78 and 56% in the non-DLBCL group, respectively. The median overall survival was 23.8 months (95% CI, not reached), with a median follow-up of 13.7 months. Factors affecting overall survival were International Prognostic Index (IPI), disease type, and remission status after CAR-T cell treatment. The most common adverse events of grade 3 or 4 during treatment were neutropenia (76%), leukopenia (71%), and thrombocytopenia (29%). The incidence of cytokine release syndrome (CRS) was 14%, and all cases were grade 1. One patient developed grade 3 neurotoxicity. No deaths were attributed to infusion of 4SCAR19 T cells, CRS, or neurotoxicity. Conclusions: In this study, patients with relapsed or refractory B cell non-Hodgkin's lymphoma who received 4SCAR19 T cell therapy had durable responses and few of adverse events. The IPI model is suitable for evaluating the prognosis of patients receiving CAR-T cell therapy. Trial registration: Chinese Clinical Trial Registry (http://www.chictr.org.cn): ChiCTR-OOC-16007779.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B Grandes Difuso/mortalidad , Linfoma de Células B Grandes Difuso/terapia , Recurrencia Local de Neoplasia/terapia , Receptores Quiméricos de Antígenos/inmunología , Adulto , Anciano , Síndrome de Liberación de Citoquinas/etiología , Femenino , Estudios de Seguimiento , Humanos , Leucopenia/etiología , Masculino , Persona de Mediana Edad , Neutropenia/etiología , Pronóstico , Supervivencia sin Progresión , Factores de Riesgo , Tasa de Supervivencia , Trombocitopenia/etiología
16.
Sensors (Basel) ; 20(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076279

RESUMEN

Resistance strain force sensors have been applied to monitor the strains in various parts and structures for industrial use. Here, we review the working principles, structural forms, and fabrication processes for resistance strain gauges. In particular, we focus on recent developments in resistance stress transfer for resistance strain force sensors and the creep effect due to sustained loads and/or temperature variations. Various error compensation methods to reduce the creep effect are analyzed to develop a metrology standard for resistance strain force sensors. Additionally, the current status of carbon nanotubes (CNTs), silicon carbide (SiC), gallium nitride (GaN), and other wide band gap semiconductors for a wide range of strain sensors are reviewed. The technical requirements and key issues of resistance strain force sensors for future applications are presented.

17.
Opt Express ; 27(21): 30971-30978, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684338

RESUMEN

The photothermal characteristics of nanoparticles are of particular interest to biophotonic and biomedical applications due to their ability to efficiently localize thermal energy down to the nanometer scale. However, few works had demonstrated an efficient dissipation of heat to their nanoscale surrounding in response to optical excitation. Here, we demonstrate an efficient platform for optical nanoheating based on silicon nanocuboids. Based on Green's tensor formalism and temperature-dependent Raman spectroscopy analyses, we found that the significant nanoheating effect is a consequence of the resonant modes specifically, to the high degree of overlap between the different resonant modes of the silicon nanocuboids. Currently, the temperature rise of up to 300 K was measured with incident power density of 2.9 mW/µm2. Such effective nanoheating platform would be suitable in applications where controllable optical nanoheating is crucial, such as nanosurgery, photochemistry, and nanofabrication.

18.
RSC Adv ; 10(1): 21-28, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35492551

RESUMEN

pH is a critical parameter used to specify the acidity or alkalinity of an aqueous solution in chemistry, food processing, and medical care. In this study, a conductimetric-type micro pH sensor has been achieved using PANI membrane fabricated on a flexible substrate film aiming to monitor wound healing. The sensor is based on the incorporation of a polyaniline (PANI) membrane, interdigital electrode, and polyimide (PI) substrate. PANI was doped with dodecyl benzene sulfonic acid (DBSA) to obtain good conductivity. The electrodes were patterned on the PI film by etching. The contact area between the PANI and interdigital electrodes improves the responsiveness of the pH sensor. A sensitivity of 58.57 mV per pH over the entire pH range from 5.45 to 8.62 was obtained experimentally, along with a superior repeatability of 8% FS (full scale) and a temperature drift of 6.8% FS. This micro flexible pH sensor aims to monitor the pH value of wound healing, which also facilitates the realization of online monitoring of the pH for telemedicine, food safety, and home health care.

19.
Sensors (Basel) ; 18(8)2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30044446

RESUMEN

The strain transfer characteristics of resistance strain gauge are theoretically investigated. A resistance strain-type transducer is modeled to be a four-layer and two-glue (FLTG) structure model, which comprises successively the surface of an elastomer sensitive element, a ground adhesive glue, a film substrate layer, an upper adhesive glue, a sensitive grids layer, and a polymer cover. The FLTG model is studied in elastic⁻mechanical shear lag theory, and the strain transfer progress in a resistance strain-type transducer is described. The strain transitional zone (STZ) is defined and the strain transfer ratio (STR) of the FLTG structure is formulated. The dependences of the STR and STZ on both the dimensional sizes of the adhesive glue and structural parameters are calculated. The results indicate that the width, thickness and shear modulus of the ground adhesive glue have a greater influence on the STZ ratio. To ensure that the resistance strain gauge has excellent strain transfer performance and low hysteresis, it is recommended that the paste thickness should be strictly controlled, and the STZ ratio should be less than 10%. Moreover, the STR strongly depends on the length and width of the sensitive grids.

20.
Ther Clin Risk Manag ; 13: 1563-1568, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29263673

RESUMEN

OBJECTIVE: This retrospective study investigated the incidence and risk factors of poor clinical outcomes after cervical surgery for cervical spinal cord injury in a large population of patients with global or segmental cervical kyphosis. METHODS: The clinical and radiological evaluation results of 269 patients with cervical kyphosis who underwent either anterior or posterior surgery between 2008 and 2013 were collected, preoperatively and at each follow-up after surgery. RESULTS: All patients were followed for an average of 2.5 years. Outcomes were classified as good or poor (n=156 and 113 patients, respectively), based on the Japanese Orthopedic Association (JOA) recovery ratios. The rates of patients with good or poor outcomes were statistically comparable with regard to gender ratio, type of injury, history of diabetes or cardiovascular disease, interval between injury and surgery, and follow-up time. The multivariate logistic regression analysis indicated that the following were independent predictors of poor improvement: patient age (P=0.016, odds ratio [OR] =1.0261); preoperative JOA scores (P=0.003, OR =0.1932); and cervical instability (P=0.004, OR =2.1562). CONCLUSION: This study showed that advanced age, low preoperative JOA score, and cervical instability are closely associated with a poor surgical outcome in patients with cervical kyphosis. However, these results do not suggest that the type of cervical kyphosis influences the clinical outcome of surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA