Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Food Chem X ; 23: 101735, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39263338

RESUMEN

Fresh yak meat is highly nutritious and prone to spoilage, so developing suitable preservation methods is crucial. In this study, hydrogel coatings composed of konjac glucomannan, Lactiplantibacillus plantarum and gallic acid (KGX) were applied to preserve fresh yak meat under ice temperature (-1 °C). After 16 days, KGX group showed lowest total viable count (5.3 ± 0.1 log cfu/g) and total volatile basic nitrogen (13.02 ± 1.40 mg/100 g), which did not exceed the relevant standards of fresh meat. Combined assessments of color, texture, pH, drip loss rate, and thiobarbituric acid reactive substances indicated that KGX coating effectively prolonged yak meat preservation. High-throughput sequencing revealed that KGX coating effectively reduced the abundance of Pseudomonas and Candida. The application of L. plantarum hydrogel coatings in conjunction with ice temperature increased the shelf life of fresh yak meat to 16-20 days, suggesting its potential as a viable preservation method for fresh meat.

2.
Food Chem X ; 23: 101637, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108628

RESUMEN

The effects of dry-salted and salt-fermented processing on the physicochemical characteristics and microbial communities of Yacai were systematically investigated. The results showed that the contents of total acid, amino acid nitrogen (AAN) and nitrite in the final products of dry-salted Yacai were greater than those in salt-fermented Yacai. Lactic acid was the dominant organic acid in the two types of Yacai. Dry-salted processing is more conducive to forming a high-quality reddish-brown color. During whole pickling process, the microbial diversity of dry-salted Yacai was higher than that of salt-fermented Yacai, particularly in the early and middle stages of fermentation. For dry-salted Yacai, 8 bacteria (Natribacillus, Chromohalobacter, Marinococcus, Lentibacillus, Nesterenkonia, Gracilibacillus, Oceanobacillus and Tetragenococcus) and 1 fungus (Zygosaccharomyces) showed a significant positive correlation with AAN. For salt-fermented Yacai, 8 bacteria (Gracilibacillus, Alkalibacillus, Oceanobacillus, Virgibacillus, Lentibacillus, Salibacterium, Chromohalobacter and Tetragenococcus) and 3 fungi (Zygosaccharomyces, Millerozyma, and Wickerhamomyces) exhibited significant positive correlations with AAN.

3.
Nat Commun ; 15(1): 6961, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138183

RESUMEN

Despite advancements in antiretroviral therapy (ART) suppressing HIV-1 replication, existing antiviral drugs pose limitations, including lifelong medication, frequent administration, side effects and viral resistance, necessitating novel HIV-1 treatment approaches. CD4, pivotal for HIV-1 entry, poses challenges for drug development due to neutralization and cytotoxicity concerns. Nevertheless, Ibalizumab, the sole approved CD4-specific antibody for HIV-1 treatment, reignites interest in exploring alternative anti-HIV targets, emphasizing CD4's potential value for effective drug development. Here, we explore anti-CD4 nanobodies, particularly Nb457 from a CD4-immunized alpaca. Nb457 displays high potency and broad-spectrum activity against HIV-1, surpassing Ibalizumab's efficacy. Strikingly, engineered trimeric Nb457 nanobodies achieve complete inhibition against live HIV-1, outperforming Ibalizumab and parental Nb457. Structural analysis unveils Nb457-induced CD4 conformational changes impeding viral entry. Notably, Nb457 demonstrates therapeutic efficacy in humanized female mouse models. Our findings highlight anti-CD4 nanobodies as promising HIV-1 therapeutics, with potential implications for advancing clinical treatment against this global health challenge.


Asunto(s)
Antígenos CD4 , Camélidos del Nuevo Mundo , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Anticuerpos de Dominio Único , VIH-1/inmunología , VIH-1/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/inmunología , Animales , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Camélidos del Nuevo Mundo/inmunología , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/farmacología , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Conformación Proteica , Femenino , Internalización del Virus/efectos de los fármacos , Células HEK293 , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Monoclonales
4.
Food Chem ; 460(Pt 1): 140534, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053270

RESUMEN

Black garlic has a variety of biological activities, but many consumers cannot accept it because of the garlic odor and the bitter taste. In this study, fermentation with yeast Wickerhamomyces anomalus was adopted to improve the flavor of black garlic juice. Although fermentation reduced antioxidant activities, the garlicky odor and bitter taste were weakened. Metabolomic analysis revealed 141 metabolites were significantly differentially regulated. The upregulated metabolites were mainly related to nucleotides, organic acids and their derivatives, while the downregulated metabolites were mainly related to amino acids, lipids and their derivatives. Flavoromics analysis revealed that 137 metabolites were significantly differentially regulated, particularly garlicky and pungent volatiles were significantly downregulated. Correlation analysis indicated that esters are most closely related to nonvolatile metabolites, and lipids degradation was significantly correlated with volatiles. The results indicated that W. anomalus fermentation is an effective strategy to improve the flavor of black garlic juice.


Asunto(s)
Fermentación , Aromatizantes , Jugos de Frutas y Vegetales , Ajo , Metabolómica , Odorantes , Gusto , Compuestos Orgánicos Volátiles , Ajo/química , Ajo/metabolismo , Ajo/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Aromatizantes/metabolismo , Aromatizantes/química , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Odorantes/análisis , Saccharomycetales/metabolismo , Humanos
5.
Anticancer Res ; 44(6): 2497-2509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821603

RESUMEN

BACKGROUND/AIM: Diffuse-type gastric cancer (DGC) often forms peritoneal metastases, leading to poor prognosis. However, the underlying mechanism of DGC-mediated peritoneal metastasis is poorly understood. DGC is characterized by desmoplastic stroma, in which heterogeneous cancer-associated fibroblasts (CAFs), including myofibroblastic CAFs (myCAFs) and senescent CAFs (sCAFs), play a crucial role during tumor progression. This study investigated the CAF subtypes induced by GC cells and the role of sCAFs in peritoneal metastasis of DGC cells. MATERIALS AND METHODS: Conditioned medium of human DGC cells (KATOIII, NUGC-4) and human intestinal-type GC (IGC) cells (MKN-7, N87) was used to induce CAFs. CAF subtypes were evaluated by analyzing the expression of α-smooth muscle actin (α-SMA), senescence-associated ß-galactosidase (SA-ß-gal), and p16 in human normal fibroblasts (GF, FEF-3). A cytokine array was used to explore the underlying mechanism of GC-induced CAF subtype development. The role of sCAFs in peritoneal metastasis of DGC cells was analyzed using a peritoneally metastatic DGC tumor model. The relationships between GC subtypes and CAF-related markers were evaluated using publicly available datasets. RESULTS: IGC cells significantly induced α-SMA+ myCAFs by secreting transforming growth factor-ß, whereas DGC cells induced SA-ß-gal+/p16+ sCAFs by secreting interleukin (IL)-8. sCAFs further secreted IL-8 to promote DGC cell migration. In vivo experiments demonstrated that co-inoculation of sCAFs significantly enhanced peritoneal metastasis of NUGC-4 cells, which was attenuated by administration of the IL-8 receptor antagonist navarixin. p16 and IL-8 expression was significantly associated with poor prognosis of DGC patients. CONCLUSION: sCAFs promote peritoneal metastasis of DGC via IL-8-mediated crosstalk.


Asunto(s)
Fibroblastos Asociados al Cáncer , Senescencia Celular , Interleucina-8 , Neoplasias Peritoneales , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Interleucina-8/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Animales , Línea Celular Tumoral , Ratones , Movimiento Celular
6.
Theranostics ; 14(6): 2637-2655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646642

RESUMEN

Rationale: To meet the need of long-acting analgesia in postoperative pain management, slow-releasing formulations of local anesthetics (LAs) have been extensively investigated. However, challenges still remain in obtaining such formulations in a facile and cost-effective way, and a mechanism for controlling the release rate to achieve an optimal duration is still missing. Methods: In this study, nanosheets formed by a self-assembling peptide were used to encapsulate ropivacaine in a soft-coating manner. By adjusting the ratio between the peptide and ropivacaine, ropivacaine particles with different size were prepared. Releasing profile of particles with different size were studied in vitro and in vivo. The influence of particle size and ropivacaine concentration on effective duration and toxicity were evaluated in rat models. Results: Our results showed that drug release rate became slower as the particle size increased, with particles of medium size (2.96 ± 0.04 µm) exhibiting a moderate release rate and generating an optimal anesthetic duration. Based on this size, formulations at different ropivacaine concentrations generated anesthetic effect with different durations in rat sciatic nerve block model, with the 6% formulation generated anesthetic duration of over 35 h. Long-acting analgesia up to 48 h of this formulation was also confirmed in a rat total knee arthroplasty model. Conclusion: This study provided a facile strategy to prepare LA particles of different size and revealed the relationship between particle size, release rate and anesthetic duration, which provided both technical and theoretical supports for developing long-acting LA formulations with promising clinical application.


Asunto(s)
Anestésicos Locales , Nanopartículas , Tamaño de la Partícula , Péptidos , Ropivacaína , Ropivacaína/administración & dosificación , Ropivacaína/química , Ropivacaína/farmacocinética , Animales , Anestésicos Locales/administración & dosificación , Anestésicos Locales/química , Ratas , Nanopartículas/química , Péptidos/química , Péptidos/administración & dosificación , Dolor Postoperatorio/tratamiento farmacológico , Ratas Sprague-Dawley , Masculino , Analgesia/métodos , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Amidas/química , Amidas/administración & dosificación , Nervio Ciático/efectos de los fármacos , Modelos Animales de Enfermedad
7.
J Food Sci ; 89(4): 2450-2464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462851

RESUMEN

Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Ratones , Lactobacillus , Colitis Ulcerosa/inducido químicamente , Sulfato de Dextran/efectos adversos , ARN Ribosómico 16S , Ácido Butírico , Bifidobacterium , Firmicutes , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon
8.
J Sci Food Agric ; 104(6): 3776-3787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38294418

RESUMEN

BACKGROUND: Melons (Cucumis melo L.) are among the most commonly consumed fruits but they are highly susceptible to mechanical damage and rot during storage and transportation. New processed products are needed to avoid postharvest fruit loss and to increase health benefits. Fermentation is an effective means of utilizing the nutrients and improving flavor. RESULTS: Fermented melon juice (MJ) was prepared using three potential probiotics Lactiplantibacillus plantarum CICC21824 (LP), Lactiplantibacillus plantarum GB3-2 (LG), and Lactiplantibacillus pentosus XZ-34 (LX). The nutrition, flavor characteristics, and digestive properties of different fermented MJs were compared. The results demonstrated that, in comparison with mono-fermentation, mixed fermentation by LG and LX could increase the level of organic acids and phenolic acids. Correspondingly, antioxidant capacity was improved significantly and positively correlated with p-coumaric acid and cinnamic acid content. The production of alcohols and acids was more strongly enhanced by mixed culture fermentation, whereas mono-fermentation reduced the content of esters, especially ethyl acetate and isopropyl acetate. Aldehydes and ketones increased significantly in fermented MJ, and damascenone and heptanal could be the characteristic aroma compounds. CONCLUSION: Mixed fermented MJ provides more beneficial phytochemicals, better flavor, and stronger antioxidant properties than mono-fermentation. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Cucurbitaceae , Fermentación , Antioxidantes/química , Cucurbitaceae/metabolismo , Frutas/química , Alcoholes/análisis
9.
Mol Ther ; 32(3): 689-703, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38268188

RESUMEN

Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Animales , Ratones , Humanos , Inmunoglobulina A Secretora , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Monoclonales , Inmunoglobulina G , Anticuerpos Antivirales
10.
Sci Rep ; 13(1): 22414, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104177

RESUMEN

Endoplasmic reticulum stress (ERS) occurs when misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER), and it is often observed in tumors, including head and neck squamous cell carcinoma (HNSCC). Relevant studies have demonstrated the prognostic significance of ERS-related long non-coding RNAs (lncRNAs) in various cancers. However, the relationship between ERS and lncRNAs in HNSCC has received limited attention in previous studies. In this study, we aimed to develop an ERS-related lncRNAs prognostic model using correlation analysis, Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) regression analysis based on data from The Cancer Genome Atlas (TCGA) database. The survival and predictive ability of this model were evaluated using Kaplan-Meier analysis and time-dependent receiver operating characteristics (ROC), while nomograms and calibration curves were constructed. Then, functional enrichment analyses, tumor mutation burden (TMB), tumor infiltration of immune cells, single sample Gene Set Enrichment Analysis (ssGSEA), and drug sensitivity analysis were performed. Additionally, we conducted a consensus cluster analysis to compare differences between subtypes of tumors. Finally, we validated the expression of the ERS-related lncRNAs that constructed prognostic risk score model in HNSCC tissues through quantitative real-time PCR (qRT-PCR). We developed a prognostic signature based on seven ERS-related lncRNAs, which showed better predictive performance than other clinicopathological features. The high-risk poor prognosis group had a poorer prognosis in comparison to the low-risk good prognosis. The area under the ROC curve (AUC) predicted by this model for 3-year survival rates of HNSCC patients was 0.805. Enrichment analysis revealed that the differentially expressed genes were primarily enriched in pathways related to immune responses and signal transduction. Low-risk patients had lower TMB, more immune cell infiltrations, and enhanced anti-tumor immunity. Cluster analysis indicated that cluster 3 may have a better prognosis and immunotherapy effect. In addition, the result of qRT-PCR was consistent with our analysis. This prognostic model based on seven ERS-related lncRNAs is a promising tool for risk stratification, survival prediction, and immune cell infiltration status assessment.


Asunto(s)
Neoplasias de Cabeza y Cuello , ARN Largo no Codificante , Humanos , Pronóstico , ARN Largo no Codificante/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Estrés del Retículo Endoplásmico/genética , Neoplasias de Cabeza y Cuello/genética
11.
Anticancer Res ; 43(11): 4809-4821, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37909979

RESUMEN

BACKGROUND/AIM: Diffuse-type gastric cancer (GC) frequently exhibits peritoneal metastasis, leading to poor prognosis. However, efforts to develop antitumor strategies for preventing the peritoneal metastasis of GC have been unsuccessful. As diffuse-type GC cells often carry a genetic alteration in the tumor suppressor p53 gene, p53 restoration may be a potent strategy for preventing peritoneal metastasis of GC. In this study, we investigated the therapeutic potential of p53-expressing adenoviral vectors against peritoneal metastasis of diffuse-type GC cells. MATERIALS AND METHODS: Three diffuse-type human GC cell types with different p53 statuses (p53-wild type NUGC-4, p53-mutant type GCIY, and p53-null type KATOIII) were used to evaluate the therapeutic potential of p53 activation induced by the p53-expressing, replication-deficient adenovirus Ad-p53 and oncolytic adenovirus OBP-702. Viability, apoptosis, and autophagy of virus-treated GC cells were analyzed under normal and sphere-forming culture conditions using the XTT assay and western blot analysis. The in vivo antitumor effects of OBP-702 and Ad-p53 were assessed using xenograft tumor models involving peritoneal metastasis of NUGC-4 and GCIY cells. RESULTS: Under normal and sphere-forming culture conditions, OBP-702 induced a significantly greater antitumor effect in GC cells compared with Ad-p53 by strongly inducing p53-mediated apoptosis and autophagy and receptor tyrosine kinase suppression. In vivo experiments demonstrated that intraperitoneal administration of OBP-702 significantly suppressed the peritoneal metastasis of NUGC-4 and GCIY cells compared with Ad-p53, leading to prolonged survival of mice. CONCLUSION: Intraperitoneal administration of OBP-702 inhibits the peritoneal metastasis of GC cells by inducing p53-mediated cytopathic activity.


Asunto(s)
Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Animales , Ratones , Adenoviridae/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias Gástricas/terapia , Neoplasias Peritoneales/prevención & control , Peritoneo , Modelos Animales de Enfermedad
12.
PLoS One ; 18(11): e0294491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972012

RESUMEN

Colorectal cancer (CRC) cells harboring KRAS or BRAF mutations show a more-malignant phenotype than cells with wild-type KRAS and BRAF. KRAS/BRAF-wild-type CRCs are sensitive to epidermal growth factor receptor (EGFR)-targeting agents, whereas KRAS/BRAF-mutant CRCs are resistant due to constitutive activation of the EGFR-downstream KRAS/BRAF signaling pathway. Novel therapeutic strategies to treat KRAS/BRAF mutant CRC cells are thus needed. We recently demonstrated that the telomerase-specific replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 exhibit therapeutic potential against KRAS-mutant human pancreatic cancer cells. In this study, we evaluated the therapeutic potential of OBP-301 and OBP-702 against human CRC cells with differing KRAS/BRAF status. Human CRC cells with wild-type KRAS/BRAF (SW48, Colo320DM, CACO-2), mutant KRAS (DLD-1, SW620, HCT116), and mutant BRAF (RKO, HT29, COLO205) were used in this study. The antitumor effect of OBP-301 and OBP-702 against CRC cells was analyzed using the XTT assay. Virus-mediated modulation of apoptosis, autophagy, and the EGFR-MEK-ERK and AKT-mTOR signaling pathways was analyzed by Western blotting. Wild-type and KRAS-mutant CRC cells were sensitive to OBP-301 and OBP-702, whereas BRAF-mutant CRC cells were sensitive to OBP-702 but resistant to OBP-301. Western blot analysis demonstrated that OBP-301 induced autophagy and that OBP-702 induced autophagy and apoptosis in human CRC cells. In BRAF-mutant CRC cells, OBP-301 and OBP-702 suppressed the expression of EGFR, MEK, ERK, and AKT proteins, whereas mTOR expression was suppressed only by OBP-702. Our results suggest that p53-armed oncolytic virotherapy is a viable therapeutic option for treating KRAS/BRAF-mutant CRC cells via induction of autophagy and apoptosis.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células CACO-2 , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Apoptosis/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Autofagia/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación
13.
Int J Biol Macromol ; 253(Pt 5): 127186, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37802441

RESUMEN

Excellent 3D printing materials must exhibit good extrudability and supportability, but these two characteristics are often contradictory. In this study, peach gum polysaccharide (PGP) was added to gelatin to prepare a 3D-printed functional gummy candy encapsulating curcumin. Rheology tests indicated that adding PGP could effectively improve the apparent viscosity and thermal stability and consequently improve the 3D printability and supportability of the products. When PGP addition was 6 %, the printing accuracy was higher than 90 %. Texture and microstructure analysis further revealed that PGP addition promoting a dense gel structure formed and the water holding capacity and supportability of gel materials were enhanced. Furthermore, the in vitro gastrointestinal digestion tests showed that after 6 h of simulated gastrointestinal fluid digestion, the retention rate of curcumin was nearly 80 %. The above results indicated that the composite gel of PGP and gelatin is a good 3D printing base material for nutrient delivery.


Asunto(s)
Curcumina , Prunus persica , Gelatina/química , Polisacáridos , Dulces , Reología , Impresión Tridimensional
14.
Foods ; 12(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37893621

RESUMEN

Melanoidins (MLDs) are formed through the reaction of carbonyl compounds and amino compounds in the Maillard reaction (MR) during the heating or storage of food. In this study, the formation, chemical composition, and structural characteristics of black garlic (BG) MLDs stored at different temperatures (4 °C, 20 °C, and 35 °C) over a period of 6 months were investigated. The initial products of the MR formed more often at 4 °C and 20 °C, while higher temperatures (35 °C) promoted the reaction in the middle and late stages of the MR. The higher temperature promoted an increase in molecular weight and MLD content, which can be attributed to the increase in protein and phenolic content. Elemental analysis confirmed an increase in nitrogen (N) content and the continuous incorporation of nitrogen-rich substances into the skeleton. Amino acids, particularly aspartic acid and threonine, were the primary N-containing compounds involved in MLD formation. Additionally, the infrared analysis revealed that the changes in MLDs during storage were characterized by amide I and amide II groups. The MR enhanced the yields of heterocyclic compounds (from 56.60% to 78.89%), especially that of O-heterocyclic compounds, at the higher temperature according to Py-GC-MS analysis. Furthermore, the higher temperature enhanced the molecular weight, maximum height, and roughness of MLDs compared to the control. The antioxidant ability of MLDs was positively correlated with storage temperatures. In summary, temperature had an impact on the formation, evolution, and antioxidant activity of MLDs.

15.
Food Res Int ; 173(Pt 1): 113250, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803562

RESUMEN

Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat ß-glucan (OG) and hydrolyzed oat ß-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.


Asunto(s)
Hidroxibenzoatos , beta-Glucanos , Hidroxibenzoatos/química , Antioxidantes/farmacología , Antioxidantes/química
16.
J Biophotonics ; 16(12): e202300027, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37644491

RESUMEN

Recently, fluorescent covalent staining methods have been developed for visualization of anatomical structures in cells and tissues. Coupled with expansion microscopy, these stains revealed various ultrastructural details. However, the covalently stainable chemical groups have been limited to amines, carbohydrates, and thiols. Here, we developed procedures for covalently labeling tissues for carboxylate and phosphate groups, utilizing carbodiimide crosslinker chemistry. In porcine kidney tissues, the carboxylate and phosphate stain provides 1.8-4.8-fold higher signal intensity than those from the three existing stains. In cancer cells, such stain allows 2-8-fold more accurate identification of nucleoli than the amine stain. In expansion microscopy samples, such stain reveals a variety of sub-cellular structures in tissues when combined with the amine stain. Such stain also allows imaging of lipid-based structures in cultured cells. With these advantages, this new covalent staining method further expands the toolset for fluorescent visualization of histology.


Asunto(s)
Colorantes , Fosfatos , Animales , Porcinos , Coloración y Etiquetado , Microscopía , Aminas , Colorantes Fluorescentes
17.
Front Oncol ; 13: 1134456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397383

RESUMEN

Background: Long non-coding RNAs (lncRNAs) are increasingly recognized as essential players in various biological processes due to their interactions with DNA, RNA, and protein. Emerging studies have demonstrated lncRNAs as prognostic biomarkers in multiple cancers. However, the prognostic effect of lncRNA AL161431.1 in head and neck squamous cell carcinoma (HNSCC) patients has not been reported. Methods: In the present study, we conducted a series of analyses to identify and validate the prognostic value of lncRNA AL161431.1 in HNSCC, which included differential lncRNAs screening, survival analysis, Cox regression analysis, time ROCanalysis, nomogram prediction, enrichment analysis, tumor infiltration of immune cells, drug sensitivity analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). Results: In this study, we performed a comprehensive survival and predictive analysis and demonstrated that AL161431.1 was an independent prognostic factor of HNSCC, for which a high AL161431.1 level indicated poor survival in HNSCC. Functional enrichment analyses found that cell growth and immune-related pathways were significantly enriched in HNSCC, suggesting that AL161431.1 may play a role in tumor development and tumor microenvironment (TME). AL161431.1-related immune cells infiltration analysis demonstrated that AL161431.1 expression is significantly positively associated with M0 macrophages in HNSCC (P<0.001). Using "OncoPredict", we recognized chemotherapy drugs sensitive to the high expression group. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to identify the expression level of AL161431.1 in HNSCC, and the results further validated our findings. Conclusions: Our findings suggest that AL161431.1 is a reliable prognostic marker for HNSCC and can potentially be an effective therapeutic target.

18.
Vaccines (Basel) ; 11(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514957

RESUMEN

Although conventional vaccine approaches have proven to be successful in preventing infectious diseases in past decades, for vaccine development against emerging/re-emerging viruses, one of the main challenges is rapid response in terms of design and manufacture. mRNA vaccines can be designed and produced within days, representing a powerful approach for developing vaccines. Furthermore, mRNA vaccines can be scaled up and may not have the risk of integration. mRNA vaccines are roughly divided into non-replicating mRNA vaccines and self-amplifying RNA (saRNA) vaccines. In this review, we provide an overview of saRNA vaccines, and discuss future directions and challenges in advancing this promising vaccine platform to combat emerging/re-emerging viruses.

20.
Food Chem X ; 18: 100675, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122553

RESUMEN

Honeysuckle leaves are rich in bioactive ingredients, but often considered as agro-wastes. In this study, honeysuckle leaf extract (HLE) was added to the carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film (CMKH). Compared to films without HLE addition (CMK), the water vapor barrier properties of CMKH slightly decreased, but the transmittance of the CMKH films in UV region (200-400 nm) as low as zero. The elongation at break of CMKH film was 1.39 âˆ¼ 1.5 fold higher than those of CMK films. The DPPH and ABTS scavenging activity of CMKH-Ⅱ was 85.75% and 90.93%, respectively, which is similar to the equivalent content of Vc. The inhibition rate of CMKH-Ⅰ and CMKH-Ⅱ against Escherichia coli and Listeria monocytogenes were close to 90%, and the inhibition rate against Staphylococcus aureus were up to 96%. The results emphasized that the composite film containing 25% (v/v) HLE has potential application value in food preservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA