Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 9: 1200, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922269

RESUMEN

Due to the high similarity in their requirements for space and food, close bacterial relatives may be each other's strongest competitors. Close bacterial relatives often form visible boundaries to separate their swarming colonies, a phenomenon termed colony-merger incompatibility. While bacterial species are known to have many incompatible strains, it is largely unclear which traits lead to multiple incompatibilities and the interactions between multiple incompatible siblings. To investigate the competitive interactions of closely related incompatible strains, we mutated Myxococcus xanthus DK1622, a predatory bacterium with complex social behavior. From 3392 random transposon mutations, we obtained 11 self-identification (SI) deficient mutants that formed unmerged colony boundaries with the ancestral strain. The mutations were at nine loci with unknown functions and formed nine independent SI mutants. Compared with their ancestral strain, most of the SI mutants showed reduced growth, swarming and development abilities, but some remained unchanged from their monocultures. When pairwise mixed with their ancestral strain for co-cultivation, these mutants exhibited improved, reduced or unchanged competitive abilities compared with the ancestral strain. The sporulation efficiencies were affected by the DK1622 partner, ranging from almost complete inhibition to 360% stimulation. The differences in competitive growth between the SI mutants and DK1622 were highly correlated with the differences in their sporulation efficiencies. However, the competitive efficiencies of the mutants in mixture were inconsistent with their growth or sporulation abilities in monocultures. We propose that the colony-merger incompatibility in M. xanthus is associated with multiple independent genetic loci, and the incompatible strains hold competitive interaction abilities, which probably determine the complex relationships between multiple incompatible M. xanthus strains and their co-existence strategies.

2.
Environ Microbiol ; 20(7): 2552-2567, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29806725

RESUMEN

The use of toxin to attack neighbours and immunity proteins to protect against toxin has been observed in bacterial conflicts, including kin discrimination. Here, we report a novel nuclease-toxin and its immunity protein function in the colony-merger incompatibility, a kind of bacterial kin discrimination, in Myxococcus xanthus DK1622. The MXAN_0049 gene was determined to be a genetic determinant for colony-merger incompatibility, and the incompatibility could be eliminated by deletion of the upstream co-transcribed MXAN_0050 gene. We demonstrated that the MXAN_0050 protein was a nuclease, and MXAN_0049 protein was able to bind to MXAN_0050 to block nuclease activity in vitro. Expression of MXAN_0050 in Escherichia coli inhibited cellular growth, and the inhibition effect could be recovered by co-expression of MXAN_0049. We found that deletion of the PAAR-encoding gene (MXAN_0044) or the type VI secretion system led to the colony-merger and co-existence with the ΔMXAN_0049 mutant, suggesting that they were associated with colony-merger incompatibility. Homologues of the nuclease-toxin and cognate immunity pair are widely distributed in bacteria. We propose a simplified model to explain the kin discrimination mechanism mediated by the nuclease-toxin and immunity protein.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Asunto(s)
Toxinas Bacterianas/inmunología , Desoxirribonucleasas/inmunología , Myxococcus xanthus/enzimología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Desoxirribonucleasas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Myxococcus xanthus/genética , Myxococcus xanthus/inmunología , Eliminación de Secuencia
3.
Front Microbiol ; 8: 122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28203231

RESUMEN

dnaE is an alpha subunit of the tripartite protein complex of DNA polymerase III that is responsible for the replication of bacterial genome. The dnaE gene is often duplicated in many bacteria, and the duplicated dnaE gene was reported dispensable for cell survivals and error-prone in DNA replication in a mystery. In this study, we found that all sequenced myxobacterial genomes possessed two dnaE genes. The duplicate dnaE genes were both highly conserved but evolved divergently, suggesting their importance in myxobacteria. Using Myxococcus xanthus DK1622 as a model, we confirmed that dnaE1 (MXAN_5844) was essential for cell survival, while dnaE2 (MXAN_3982) was dispensable and encoded an error-prone enzyme for replication. The deletion of dnaE2 had small effects on cellular growth and social motility, but significantly decreased the development and sporulation abilities, which could be recovered by the complementation of dnaE2. The expression of dnaE1 was always greatly higher than that of dnaE2 in either the growth or developmental stage. However, overexpression of dnaE2 could not make dnaE1 deletable, probably due to their protein structural and functional divergences. The dnaE2 overexpression not only improved the growth, development and sporulation abilities, but also raised the genome mutation rate of M. xanthus. We argued that the low-expressed error-prone DnaE2 played as a balancer for the genome mutation rates, ensuring low mutation rates for cell adaptation in new environments but avoiding damages from high mutation rates to cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA