RESUMEN
Antidepressants are among the most extensively prescribed psychotropic drugs worldwide. Discontinuation induced withdrawal symptoms have been reported for almost all antidepressants. The incidence of antidepressant withdrawal syndrome (AWS) and other characteristics remain unknown. We searched the PubMed, Embase, PsycINFO, MEDLINE, CINAHL, and Cochrane Central Register of Controlled Trials databases from inception to December 31, 2023. Randomized double-blinded trials, longitudinal or cross-sectional studies that reported the incidence and other characteristics of antidepressant withdrawal symptoms were included. The pooled incidence of AWS was calculated by a random effects model. We included 35 studies, of which 2 studies just provided incidence of specific withdrawal symptoms, and 4 studies only described other characteristics. The pooled incidence of AWS from all available studies was 42.9%, from 11 RCTs was 44.4%, in studies in which the treatment duration was mostly 8-12 weeks, which usually appear within 2 weeks, and were generally measured for <4 weeks. The incidence in selective serotonin-norepinephrine reuptake inhibitors was the lowest (29.7%), followed by selective serotonin reuptake inhibitors (45.6%) and tricyclic antidepressants (59.7%), without significant differences (p = 0.221). Treatment duration showed a dose-response to the incidence of AWS (6-12 W: 35.1%, 12-24 W: 42.7%, >24 W: 51.4%). The half-life did not show such a simple dose-dependent relationship. The pooled estimate was robust regardless whether withdrawal symptoms were measured in RCTs or observational studies (including face-to-face and online survey studies). Tapering the dose reduced the incidence of AWS compared with abrupt stoppage (34.5% vs 42.5%), without a significant difference (p = 0.484). Risk factors for withdrawal symptoms included being female, younger, experiencing adverse effects early in treatment, taking higher doses or longer duration of medication, abrupt cessation of drugs, and those with a lower clearance of drugs or with serotonin 1A receptor gene variation. The findings suggest the incidence of AWS are common and some clinical characteristics and risk factors which can help clinicians identify who is at greater risk of experiencing AWS. Discontinuation studies on long-term antidepressant users with long follow-up periods are required in the future.
RESUMEN
AIMS: Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS: T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS: Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS: These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.
Asunto(s)
Astrocitos , Diabetes Mellitus Tipo 2 , Regulación hacia Abajo , Transportador 2 de Aminoácidos Excitadores , Hipocampo , Ratones Endogámicos C57BL , Complicaciones Cognitivas Postoperatorias , Animales , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Astrocitos/metabolismo , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/metabolismo , Hipocampo/metabolismo , Ratones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones TransgénicosRESUMEN
Piperazines are a class of new psychoactive substances with hallucinogenic effects that affect the central nervous system by affecting the level of monoamine neurotransmitters. Abuse of piperazines will produce stimulating and hallucinogenic effects, accompanied by headache, dizziness, anxiety, insomnia, vomiting, chest pain, tachycardia, hypertension and other adverse reactions, and may even cause cardiovascular diseases and multiple organ failure and lead to death, seriously affecting human physical and mental health and public safety. The abuse of new psychoactive substance piperazines has attracted extensive attention from the international community. The study of its pharmacological toxicology and analytical methods has become a research hotspot in the field of forensic medicine. This paper reviews the in vivo processes, sample treatment and analytical methods of existing piperazines, in order to provide reference for forensic identification.
Asunto(s)
Piperazinas , Psicotrópicos , Detección de Abuso de Sustancias , Humanos , Piperazinas/análisis , Psicotrópicos/análisis , Detección de Abuso de Sustancias/métodos , Medicina Legal/métodos , Toxicología Forense/métodos , Alucinógenos/análisis , Trastornos Relacionados con Sustancias/diagnósticoRESUMEN
BACKGROUND: Cognitive dysfunction is the main manifestation of central neuropathy. Although cognitive impairments tend to be overlooked in patients with diabetes mellitus (DM), there is a growing body of evidence linking DM to cognitive dysfunction. Hyperglycemia is closely related to neurological abnormalities, while often disregarded in clinical practice. Changes in cerebral neurotransmitter levels are associated with a variety of neurological abnormalities and may be closely related to blood glucose control in patients with type 2 DM (T2DM). AIM: To evaluate the concentrations of cerebral neurotransmitters in T2DM patients exhibiting different hemoglobin A1c (HbA1c) levels. METHODS: A total of 130 T2DM patients were enrolled at the Department of Endocrinology of Shanghai East Hospital. The participants were divided into four groups according to their HbA1c levels using the interquartile method, namely Q1 (< 7.875%), Q2 (7.875%-9.050%), Q3 (9.050%-11.200%) and Q4 (≥ 11.200%). Clinical data were collected and measured, including age, height, weight, neck/waist/hip circumferences, blood pressure, comorbidities, duration of DM, and biochemical indicators. Meanwhile, neurotransmitters in the left hippocampus and left brainstem area were detected by proton magnetic resonance spectroscopy. RESULTS: The HbA1c level was significantly associated with urinary microalbumin (mALB), triglyceride, low-density lipoprotein cholesterol (LDL-C), homeostasis model assessment of insulin resistance (HOMA-IR), and beta cell function (HOMA-ß), N-acetylaspartate/creatine (NAA/Cr), and NAA/choline (NAA/Cho). Spearman correlation analysis showed that mALB, LDL-C, HOMA-IR and NAA/Cr in the left brainstem area were positively correlated with the level of HbA1c (P < 0.05), whereas HOMA-ß was negatively correlated with the HbA1c level (P < 0.05). Ordered multiple logistic regression analysis showed that NAA/Cho [Odds ratio (OR): 1.608, 95% confidence interval (95%CI): 1.004-2.578, P < 0.05], LDL-C (OR: 1.627, 95%CI: 1.119-2.370, P < 0.05), and HOMA-IR (OR: 1.107, 95%CI: 1.031-1.188, P < 0.01) were independent predictors of poor glycemic control. CONCLUSION: The cerebral neurotransmitter concentrations in the left brainstem area in patients with T2DM are closely related to glycemic control, which may be the basis for the changes in cognitive function in diabetic patients.
RESUMEN
INTRODUCTION: CD24 is a highly glycosylated glycosylphosphatidylinositol anchored membrane protein that plays an important role in tumor progression. The aim of this study was to investigate the effect of abnormal expression of CD24 on the proliferation, migration and invasion of breast cancer (BC) cells, and the molecular mechanism of regulating CD24 expression in breast cancer. METHODOLOGY: The bioinformatics method was used to predict the expression level of CD24 in BC and its relationship with the occurrence and development of BC. IHC, RT-qPCR and WB were used to detect the expression of CD24 in BC tissues and cells. The proliferation of CD24 was evaluated by CCK-8 and colony formation assay, and the migration and invasion of CD24 were evaluated by wound healing and transwell. In addition, the effect of CD24 on the malignancy of BC in vivo was further evaluated by subcutaneous tumorigenesis assay. Molecular mechanisms were measured by luciferase reporter assays, biotin-labeled miRNA pull-down assay, RIP, and western blotting. RESULTS: The results show that CD24 is highly expressed in breast cancer tissues and cell lines, and knockdown of CD24 in vivo and in vitro can inhibit the proliferation, migration and invasion of BC cells. Mechanistically, the transcription factor ZNF460 promotes its expression by binding to the CD24 promoter, and the expression of ZNF460 is regulated by miR-125a-5p, which inhibits its expression by targeting the 3'UTR of ZNF460. In addition, LINC00525 acts as a ceRNA sponge to adsorb miR-125a-5p and regulate its expression. CONCLUSIONS: Overexpression of CD24 is involved in the development and poor prognosis of BC, which can be used as a potential target for the treatment of BC and provide a theoretical basis for the treatment of BC.
Asunto(s)
Neoplasias de la Mama , Antígeno CD24 , Proliferación Celular , Progresión de la Enfermedad , MicroARNs , ARN Largo no Codificante , Humanos , Antígeno CD24/genética , Antígeno CD24/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , MicroARNs/genética , Animales , Ratones , ARN Largo no Codificante/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Movimiento Celular/genética , Ratones Endogámicos BALB C , PronósticoRESUMEN
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Asunto(s)
Trastornos Mentales , Humanos , Trastornos Mentales/fisiopatología , Trastornos Mentales/terapia , Animales , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/fisiopatologíaRESUMEN
The full mechanism of action of propofol, a commonly administered intravenous anesthetic drug in clinical practice, remains elusive. The focus of this study was the role of GABAergic neurons which are the main neuron group in the ventral pallidum (VP) closely associated with anesthetic effects in propofol anesthesia. The activity of VP GABAergic neurons following propofol anesthesia in Vgat-Cre mice was observed via detecting c-Fos immunoreactivity by immunofluorescence and western blotting. Subsequently, chemogenetic techniques were employed in Vgat-Cre mice to regulate the activity of VP GABAergic neurons. The role of VP GABAergic neurons in generating the effects of general anesthesia induced by intravenous propofol was further explored through behavioral tests of the righting reflex. The results revealed that c-Fos expression in VP GABAergic neurons in Vgat-Cre mice dramatically decreased after propofol injection. Further studies demonstrated that chemogenetic activation of VP GABAergic neurons during propofol anesthesia shortened the duration of anesthesia and promoted wakefulness. Conversely, the inhibition of VP GABAergic neurons extended the duration of anesthesia and facilitated the effects of anesthesia. The results obtained in this study suggested that regulating the activity of GABAergic neurons in the ventral pallidum altered the effect of propofol on general anesthesia.
Asunto(s)
Anestesia General , Anestésicos Intravenosos , Prosencéfalo Basal , Neuronas GABAérgicas , Propofol , Propofol/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Animales , Prosencéfalo Basal/efectos de los fármacos , Anestésicos Intravenosos/farmacología , Anestesia General/métodos , Ratones , Masculino , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/fisiología , Vigilia/efectos de los fármacos , Vigilia/fisiología , Ratones Endogámicos C57BL , Proteínas del Transporte Vesicular de Aminoácidos InhibidoresRESUMEN
Immune checkpoint blockade (ICB) has significantly improved the prognosis of patients with cancer, although the majority of such patients achieve low response rates; consequently, new therapeutic approaches are urgently needed. The upregulation of sialic acid-containing glycans is a common characteristic of cancer-related glycosylation, which drives disease progression and immune escape via numerous pathways. Herein, the development of self-assembled core-shell nanoscale coordination polymer nanoparticles loaded with a sialyltransferase inhibitor, referred to as NCP-STI which effectively stripped diverse sialoglycans from cancer cells, providing an antibody-independent pattern to disrupt the emerging Siglec-sialic acid glyco-immune checkpoint is reported. Furthermore, NCP-STI inhibits sialylation of the concentrated nucleoside transporter 1 (CNT1), promotes the intracellular accumulation of anticancer agent gemcitabine (Gem), and enhances Gem-induced immunogenic cell death (ICD). As a result, the combination of NCP-STI and Gem (NCP-STI/Gem) evokes a robust antitumor immune response and exhibits superior efficacy in restraining the growth of multiple murine tumors and pulmonary metastasis. Collectively, the findings demonstrate a novel form of small molecule-based chemo-immunotherapy approach which features sialic acids blockade that enables cooperative effects of cancer cell chemosensitivity and antitumor immune responses for cancer treatment.
RESUMEN
Two photochromic Cd(II)-CPs were obtained based on the viologen ligand using different synthetic routes, named {[Cd4(p-BDC)4(CPB)2(H2O)2]·2H2O·EtOH}n (1) and {[Cd(p-BDC)(CPB)(H2O)]·(L)·DMF}n (2) (p-H2BDC = 1,4-benzene-dicarboxylate, HCPB·Cl = 1-(4-carboxyphenyl)-4,4'-bipyridinium·Cl, L = 2,4-dinitrochlorobenzene, and DMF = N,N-dimethylformamide), respectively. Due to different coordination modes, the two Cd(II)-CPs show different structures. Compound 1 exhibits a three-dimensional (3D) framework with bimetallic nodes, while compound 2 displays a 2-fold interpenetrated (4,4) net topology. Notably, the two Cd(II)-CPs exhibit substantial disparities in photo/thermochromism, which can be attributed to variations in donor-acceptor (D-A) distances arising from structural differences. Compound 1 showed visually sensitive photo- and thermochromic behavior due to multi-pathway electron transfer and short D-A distances, which is relatively rare in electron-transfer type photochromic systems. In contrast, 2 only demonstrates insensitive photochromic behavior, with a slight deepening of the color observed after 2 hours of UV light, which is due to the mono-pathway electron transfer and long D-A distance. Moreover, we first combined Cd(II)-viologen CPs with polydimethylsiloxane (PDMS) to prepare a 1@PDMS flexible UV imaging film. 1@PDMS exhibits excellent bendability and stretchability and maintains good photochromic properties after 100 bending cycles. To demonstrate the rapid color response and distinct color contrast of 1, its application in anti-counterfeiting is also demonstrated.
RESUMEN
BACKGROUND: Since adverse events during treatment affect adherence and subsequent glycemic control, understanding the safety profile of oral anti-diabetic drugs is imperative for type 2 diabetes mellitus (T2DM) therapy. AIM: To evaluate the risk of infection in patients with T2DM treated with dipeptidyl-peptidase 4 (DPP-4) inhibitors. METHODS: Electronic databases were searched. The selection criteria included randomized controlled trials focused on cardiovascular outcomes. In these studies, the effects of DPP-4 inhibitors were directly compared to those of either other active anti-diabetic treatments or placebo. Six trials involving 53616 patients were deemed eligible. We calculated aggregate relative risks employing both random-effects and fixed-effects approaches, contingent upon the context. RESULTS: The application of DPP-4 inhibitors showed no significant link to the overall infection risk [0.98 (0.95, 1.02)] or the risk of serious infections [0.96 (0.85, 1.08)], additionally, no significant associations were found with opportunistic infections [0.69 (0.46, 1.04)], site-specific infections [respiratory infection 0.99 (0.96, 1.03), urinary tract infections 1.02 (0.95, 1.10), abdominal and gastrointestinal infections 1.02 (0.83, 1.25), skin structure and soft tissue infections 0.81 (0.60, 1.09), bone infections 0.96 (0.68, 1.36), and bloodstream infections 0.97 (0.80, 1.18)]. CONCLUSION: This meta-analysis of data from cardiovascular outcome trials revealed no heightened infection risk in patients undergoing DPP-4 inhibitor therapy compared to control cohorts.
RESUMEN
BACKGROUND: The measurement of triceps skinfold (TSF) thickness serves as a noninvasive metric for evaluating subcutaneous fat distribution. Despite its clinical utility, the TSF thickness trajectories and their correlation with overall mortality have not been thoroughly investigated. AIM: To explore TSF thickness trajectories of Chinese adults and to examine their associations with all-cause mortality. METHODS: This study encompassed a cohort of 14747 adults sourced from the China Health and Nutrition Survey. Latent class trajectory modeling was employed to identify distinct trajectories of TSF thickness. Subjects were classified into subgroups reflective of their respective TSF thickness trajectory. We utilized multivariate Cox regression analyses and mediation examinations to explore the link between TSF thickness trajectory and overall mortality, including contributory factors. RESULTS: Upon adjustment for multiple confounding factors, we discerned that males in the 'Class 2: Thin-stable' and 'Class 3: Thin-moderate' TSF thickness trajectories exhibited a markedly reduced risk of mortality from all causes in comparison to the 'Class 1: Extremely thin' subgroup. In the mediation analyses, the Geriatric Nutritional Risk Index was found to be a partial intermediary in the relationship between TSF thickness trajectories and mortality. For females, a lower TSF thickness pattern was significantly predictive of elevated all-cause mortality risk exclusively within the non-elderly cohort. CONCLUSION: In males and non-elderly females, lower TSF thickness trajectories are significantly predictive of heightened mortality risk, independent of single-point TSF thickness, body mass index, and waist circumference.
RESUMEN
Second-generation antipsychotics (SGAs) are widely used in treating schizophrenia and related disorders, also other mental disorders. However, the efficacy and safety of SGAs for treating other mental disorders is unclear. A systematic literature search for randomized, placebo-controlled trials of 11 SGAs for treating 18 mental disorders apart from schizophrenia were carried out from database inception to April 3, 2022. The primary outcome was the mean change in the total score for different mental disorders. The secondary outcome was the odds ratio (OR) of response, remission rates and risk ratio (RR) of adverse events (AEs). A total of 181 studies (N = 65,480) were included. All SGAs showed significant effects in treating other mental disorders compared with placebo, except autistic disorder and dementia. Aripiprazole is the most effective treatment for bipolar mania [effect size = -0.90, 95% CI: -1.59, -0.21] and Tourette's disorder [effect size = -0.80, 95% CI: -1.14, -0.45], olanzapine for bipolar depression [effect size = -0.86, 95% CI: -1.32, -0.39] and post-traumatic stress disorder [effect size = -0.98, 95% CI: -1.55, -0.41], lurasidone for depression [effect size = -0.66, 95% CI: -0.82, -0.50], quetiapine for anxiety [effect size = -1.20, 95% CI: -1.96, -0.43], sleep disorders [effect size = -1.2, 95% CI: -1.97, -0.58], and delirium [effect size = -0.36, 95% CI: -0.70, -0.03], and risperidone for obsessive-compulsive disorder [effect size = -2.37, 95% CI: -3.25, -1.49], respectively. For safety, AE items for each SGAs was different. Interestingly, we found that some AEs of OLZ, QTP, RIS and PALI have significant palliative effects on some symptoms. Significant differences in the efficacy and safety of different SGAs for treatment of other mental disorders should be considered for choosing the drug and for the balance between efficacy and tolerability for the specific patient.
Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/efectos adversos , Antipsicóticos/uso terapéutico , Olanzapina/efectos adversos , Olanzapina/uso terapéutico , Fumarato de Quetiapina/efectos adversos , Fumarato de Quetiapina/uso terapéutico , Risperidona/efectos adversos , Risperidona/uso terapéutico , Esquizofrenia/tratamiento farmacológicoRESUMEN
M1 macrophage-mediated excessive inflammatory response plays a key role in the onset and progression of acute pancreatitis (AP), and this study aimed to investigate the role and underlying mechanisms by which the macrophage polarization-related long noncoding RNA (lncRNA) MM2P participated in the regulation of AP progression. By performing quantitative reverse-transcription PCR (qRT-PCR) assay, lncRNA MM2P was found to be downregulated in both sodium taurocholate-induced AP model mice tissues and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and gain-of-function experiments confirmed that overexpression of lncRNA MM2P counteracted inflammatory responses, reduced macrophage infiltration and facilitated M1-to-M2 transformation of macrophages to ameliorate AP development in vitro and in vivo. Further mechanical experiments revealed that lncRNA MM2P inhibited Src homology 2 containing protein tyrosine phosphatase 2 (SHP2)-mediated signal transducer and activator of transcription 3 (STAT3) dephosphorylation to activate the STAT3 signaling, and silencing of SHP2 suppressed M1 type skewing in LPS-induced RAW264.7 cells. Interestingly, our rescuing experiments verified that lncRNA MM2P-induced suppressing effects on M1-polarization of LPS-treated RAW264.7 cells were abrogated by co-treating cells with STAT3 inhibitor stattic. Collectively, our data for the first time revealed that lncRNA MM2P suppressed M1-polarized macrophages to attenuate the progression of sodium taurocholate-induced AP, and lncRNA MM2P might be an ideal biomarker for AP diagnosis and treatment.
Asunto(s)
Pancreatitis , ARN Largo no Codificante , Animales , Humanos , Ratones , Enfermedad Aguda , Inflamación , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , ARN Largo no Codificante/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismoRESUMEN
In this study, we designed and manufactured a posterior lumbar interbody fusion cage for osteoporosis patients using 3D-printing. The cage structure conforms to the anatomical endplate's curved surface for stress transmission and internal lattice design for bone growth. Finite element (FE) analysis and weight topology optimization under different lumbar spine activity ratios were integrated to design the curved surface (CS-type) cage using the endplate surface morphology statistical results from the osteoporosis patients. The CS-type and plate (P-type) cage biomechanical behaviors under different daily activities were compared by performing non-linear FE analysis. A gyroid lattice with 0.25 spiral wall thickness was then designed in the internal cavity of the CS-type cage. The CS-cage was manufactured using metal 3D printing to conduct in vitro biomechanical tests. The FE analysis result showed that the maximum stress values at the inferior L3 and superior L4 endplates under all daily activities for the P-type cage implantation model were all higher than those for the CS-type cage. Fracture might occur in the P-type cage because the maximum stresses found in the endplates exceeded its ultimate strength (about 10 MPa) under flexion, torsion and bending loads. The yield load and stiffness of our designed CS-type cage fall into the optional acceptance criteria for the ISO 23089 standard under all load conditions. This study approved a posterior lumbar interbody fusion cage designed to have osteoporosis anatomical curved surface with internal lattice that can achieve appropriate structural strength, better stress transmission between the endplate and cage, and biomechanically tested strength that meets the standard requirements for marketed cages.
RESUMEN
The mechanism underlying the hypnosis effect of propofol is still not fully understood. In essence, the nucleus accumbens (NAc) is crucial for regulating wakefulness and may be directly engaged in the principle of general anesthesia. However, the role of NAc in the process of propofol-induced anesthesia is still unknown. We used immunofluorescence, western blotting, and patch-clamp to access the activities of NAc GABAergic neurons during propofol anesthesia, and then we utilized chemogenetic and optogenetic methods to explore the role of NAc GABAergic neurons in regulating propofol-induced general anesthesia states. Moreover, we also conducted behavioral tests to analyze anesthetic induction and emergence. We found out that c-Fos expression was considerably dropped in NAc GABAergic neurons after propofol injection. Meanwhile, patch-clamp recording of brain slices showed that firing frequency induced by step currents in NAc GABAergic neurons significantly decreased after propofol perfusion. Notably, chemically selective stimulation of NAc GABAergic neurons during propofol anesthesia lowered propofol sensitivity, prolonged the induction of propofol anesthesia, and facilitated recovery; the inhibition of NAc GABAergic neurons exerted opposite effects. Furthermore, optogenetic activation of NAc GABAergic neurons promoted emergence whereas the result of optogenetic inhibition was the opposite. Our results demonstrate that NAc GABAergic neurons modulate propofol anesthesia induction and emergence.
Asunto(s)
Propofol , Propofol/farmacología , Núcleo Accumbens , Neuronas GABAérgicas , Hipnóticos y Sedantes/farmacología , Anestesia GeneralRESUMEN
BACKGROUND: Previous reports had linked depression to thyroid function. However, the relationship between thyroid function and clinical characteristics in major depressive disorder (MDD) patients with suicidal attempts (SA) is still unclear. AIMS: This study aims to reveal the association between thyroid autoimmunity and clinical characteristics in depressed patients with SA. METHODS: We divided 1718 first-episode and drug-naive MDD patients into groups with suicide attempt (MDD-SA) and without suicide attempt (MDD-NSA). Hamilton Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale (HAMA), and the positive subscale of the Positive and Negative Syndrome Scale (PANSS) were assessed; thyroid function and autoantibodies were detected. RESULTS: The total scores of HAMD, HAMA and psychotic positive symptoms were significantly higher in patients with MDD-SA, accompanied by higher levels of TSH, TG-Ab and TPO-Ab, than in patients with MDD-NSA, without gender differences. Total scores of positive symptoms (TSPS) in MDD-SA patients with increased TSH or TG-Ab was significantly higher than in MDD-NSA patients and in MDD-SA patients with normal TSH and TG-Ab. The proportion of elevated-TSPS in MDD-SA patients was >4 times that in MDD-NSA patients. The proportion of MDD-SA patients with elevated-TSPS was >3 times that with not-elevated TSPS patients. CONCLUSIONS: Thyroid autoimmune abnormalities and psychotic positive symptoms may be the clinical features of MDD-SA patients. Psychiatrists should be more alert to the possibility of suicidal behaviors when they first encounter such a patient.
Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Intento de Suicidio , Glándula Tiroides , Autoinmunidad , TirotropinaRESUMEN
Kruppel-like factors (KLFs) are a family of zinc finger transcription factors that have been found to play an essential role in the development of various human tissues, including epithelial, teeth, and nerves. In addition to regulating normal physiological processes, KLFs have been implicated in promoting the onset of several cancers, such as gastric cancer, lung cancer, breast cancer, liver cancer, and colon cancer. To inhibit cancer progression, various existing medicines have been used to modulate the expression of KLFs, and anti-microRNA treatments have also emerged as a potential strategy for many cancers. Investigating the possibility of targeting KLFs in cancer therapy is urgently needed, as the roles of KLFs in cancer have not received enough attention in recent years. This review summarizes the factors that regulate KLF expression and function at both the transcriptional and posttranscriptional levels, which could aid in understanding the mechanisms of KLFs in cancer progression. We hope that this review will contribute to the development of more effective anti-cancer medicines targeting KLFs in the future.
Asunto(s)
Neoplasias de la Mama , Factores de Transcripción , Humanos , Femenino , Factores de Transcripción/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Regulación de la Expresión GénicaRESUMEN
Indium selenide (InSe) is an emerging van der Waals material, which exhibits the potential to serve in excellent electronic and optoelectronic devices. One of the advantages of layered materials is their application to flexible devices. How strain alters the electronic and optical properties is, thus, an important issue. In this work, we experimentally measured the strain dependence on the angle-resolved second harmonic generation (SHG) pattern of a few layers of InSe. We used the exfoliation method to fabricate InSe flakes and measured the SHG images of the flakes with different azimuthal angles. We found the SHG intensity of InSe decreased, while the compressive strain increased. Through first-principles electronic structure calculations, we investigated the strain dependence on SHG susceptibilities and the corresponding angle-resolved SHG pattern. The experimental data could be fitted well by the calculated results using only a fitting parameter. The demonstrated method based on first-principles in this work can be used to quantitatively model the strain-induced angle-resolved SHG patterns in 2D materials. Our obtained results are very useful for the exploration of the physical properties of flexible devices based on 2D materials.
RESUMEN
Paroxysmal kinesigenic dyskinesia (PKD) is a movement disorder characterized by recurrent and transient episodes of involuntary movements, including dystonia, chorea, ballism, or a combination of these, which are typically triggered by sudden voluntary movement. Disturbance of the basal ganglia-thalamo-cortical circuit has long been considered the cause of involuntary movements. Impairment of the gating function of the basal ganglia can cause an aberrant output toward the thalamus, which in turn leads to excessive activation of the cerebral cortex. Structural and functional abnormalities in the basal ganglia, thalamus, and cortex and abnormal connections between these brain regions have been found in patients with PKD. Recent studies have highlighted the role of the cerebellum in PKD. Insufficient suppression from the cerebellar cortex to the deep cerebellar nuclei could lead to overexcitation of the thalamocortical pathway. Therefore, this literature review aims to provide a comprehensive overview of the current research progress to explore the neural circuits and pathogenesis of PKD and promote further understanding and outlook on the pathophysiological mechanism of movement disorders. © 2023 International Parkinson and Movement Disorder Society.
Asunto(s)
Corea , Discinesias , Distonía , Trastornos del Movimiento , HumanosRESUMEN
Feeder cells are essential to derive pluripotent stem cells (PSCs). Mouse embryonic fibroblasts (MEF) are widely used as feeder to generate and culture embryonic stem cells (ESCs) and induced PSCs (iPSCs) in many species. However it may not be suitable for livestock ESCs/iPSCs due to interspecies difference. Previously we derived bovine iPSCs from bovine Sertoli cells using MEF feeder. Here we compared the effects of MEF feeder and bovine embryonic fibroblasts (BEF) feeder on the maintenance of bovine iPSC pluripotency and morphology as well their contributions to the naïve-like conversion, based on a naïve medium (NM). The results showed successful conversion of the primed bovine iPSCs to naïve-like state within 3-4 days both on MEF feeder and BEF feeder in NM (termed as MNM and BNM respectively). These naïve-like iPSCs showed normal karyotype. There were more iPSC colonies under BNM condition than MNM condition. Epigenetically, histone modification H3K4 was upregulated, while H3K27 was downregulated in the naïve-like iPSCs. We further analyzed the naïve markers and differentiation potential both in vitro and in vivo of these cells, which were all reserved throughout the maintenance. Together, bovine naïve-like iPSCs can be generated both on MEF and BEF feeder in NM condition. The BNM condition is able to sustain the pluripotency and differentiation potential of the naïve-like bovine iPSCs, and improve the conversion efficiency.