Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Sci Rep ; 14(1): 15364, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965259

RESUMEN

With the gradual shift of coal mining to the western coal mining region of China, floor heave in weakly cemented mudstone roadways has become an issue affecting the safety and efficiency of coal mine production. Additionally, different mining rates can lead to fluctuating support stresses on the roof and floor of weakly cemented mudstone roadways. Therefore, obtaining a comprehensive understanding of the mechanical properties of weakly cemented mudstone at different loading rates is conducive to improving the issue of floor heave in such roadways and provides a theoretical basis for further study. In this context, a series of uniaxial mechanical tests with concurrent acoustic emission monitoring were conducted on specimens of weakly cemented mudstone under various loading rates (0.005, 0.01, 0.05, and 0.1 mm/s). The stress‒strain and acoustic emission response curves were obtained to effectively characterize the strength, deformation, damage, macroscale instability, and crack propagation characteristics of the mudstone under the influence of loading rate effects. The research results support the following findings: (1) With increasing loading rate, the peak strength and elastic modulus of weakly cemented mudstone significantly increase, while the peak axial strain and peak radial deformation significantly decrease. (2) With increasing loading rate, the stress required to trigger the expansion of weakly cemented mudstone gradually increases, and a significant power-law relationship arises between the strain of the mudstone at the start of expansion and the loading rate. (3) With increasing loading rate, the acoustic emission ringing count of weakly cemented mudstone increases: The failure of weakly cemented mudstone changes from small-range progressive failure to sudden failure, and the failure mode transitions from shear failure to tensile‒shear composite failure. (4) The studied mudstone damage variables increase with increasing loading rate, following an approximate exponential function. The conclusions obtained in this work can provide a theoretical basis for the evolution mechanism and control of floor heave in deep roadway mining.

2.
J Agric Food Chem ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943592

RESUMEN

Arbuscular mycorrhizal fungi (AMF) influence silicon (Si) uptake by plants, but the mechanisms remain unclear. This study investigated the mechanisms of AMF-mediated Si uptake by rice, a model Si-accumulating plant, and explored the tripartite interactions among AMF, Si, and phosphorus (P). AMF inoculation increased shoot Si content by 97% when supplied with silicic acid and by 29% with calcium silicate and upregulated expression of Si transporters Lsi1 and Lsi2 in roots. Supplying Si only to AMF hyphae increased the root Si content by 113%, indicating direct Si uptake by hyphae. Mechanisms of AMF-induced Si uptake were elucidated: 1) direct Si uptake by hyphae, 2) increased silicate dissolution, and 3) upregulation of Si transporters. Silicon application also increased AMF colonization by 28%, and the absence of interactions was observed on P uptake. Altogether, AMF support Si acquisition and Si fosters AMF colonization in rice, whereas the P uptake depends more on AMF than on Si.

3.
J Control Release ; 371: 470-483, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849094

RESUMEN

Hypoimmunogenicity and the immunosuppressive microenvironment of ovarian cancer severely restrict the capability of immune-mediated tumor killing. Immunogenic cell death (ICD) introduces a theoretical principle for antitumor immunity by increasing antigen exposure and presentation. Despite recent research progress, the currently available ICD inducers are still very limited, and many of them can hardly induce sufficient ICD based on traditional endoplasmic reticulum (ER) stress. Accumulating evidence indicates that inducing mitochondrial stress usually shows a higher efficiency in evoking large-scale ICD than that via ER stress. Inspired by this, herein, a mitochondria-targeted polyprodrug nanoparticle (named Mito-CMPN) serves as a much superior ICD inducer, effectively inducing chemo-photodynamic therapy-caused mitochondrial stress in tumor cells. The rationally designed stimuli-responsive polyprodrugs, which can self-assemble into nanoparticles, were functionalized with rhodamine B for mitochondrial targeting, cisplatin and mitoxantrone (MTO) for synergistic chemo-immunotherapy, and MTO also serves as a photosensitizer for photodynamic immunotherapy. The effectiveness and robustness of Mito-CMPNs in reversing the immunosuppressive microenvironment is verified in both an ovarian cancer subcutaneous model and a high-grade serous ovarian cancer model. Our results support that the induction of abundant ICD by focused mitochondrial stress is a highly effective strategy to improve the therapeutic efficacy of immunosuppressive ovarian cancer.


Asunto(s)
Antineoplásicos , Mitocondrias , Nanopartículas , Neoplasias Ováricas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Mitocondrias/efectos de los fármacos , Fotoquimioterapia/métodos , Animales , Humanos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/administración & dosificación , Profármacos/uso terapéutico , Profármacos/farmacología , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones Endogámicos BALB C , Cisplatino/farmacología , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral/efectos de los fármacos
4.
Chem Biol Interact ; 399: 111119, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936533

RESUMEN

Hepatic stellate cells (HSCs) are a major source of fibrogenic cells and play a central role in liver fibrogenesis. HSC activation depends on metabolic activation, for which it is well established that fatty acid oxidation (FAO) sustains their rapid proliferative rate. Studies have indicated that tanshinones inhibit HSC activation, however, the anti-fibrosis mechanisms of tanshinones are remain unclear. Herein, we reported that cryptotanshinone (CTS), a lipid-soluble ingredient of Salvia miltiorrhiza Bunge, exhibited the strongest inhibitory effects on HSC-LX2 proliferation and activation. CTS could induce lipocyte phenotype in mouse primary HSC and HSC-LX2. Transcriptomic sequencing and qPCR revealed that CTS regulated fatty acid metabolism and inhibited CPT1A and CPT1B expression. Target prediction suggested CTS regulates lipid metabolism by targeting STAT3. Mechanistically, the level of ATP and acetyl-CoA were reduced by the treatment of CTS, indicating that CTS could inhibit the level of FAO. Furthermore, CTS could inhibit the phosphorylation and nuclear translocation of STAT3. Additionally, CPT1A overexpression reversed the efficacy of CTS. Finally, CTS (40 mg/kg/day) attenuated CCl4-induced liver fibrosis and inhibited collagen production and HSC activation. Moreover, the results of immunofluorescence showed that α-SMA and p-STAT3 were co-located, and CTS could reduce the levels of p-STAT3 and α-SMA. In summary, CTS alleviated liver fibrosis by inhibiting the p-STAT3/CPT1A-dependent FAO both in vitro and in vivo, making it a potential candidate drug for the treatment of liver fibrosis.

5.
BMC Plant Biol ; 24(1): 501, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840062

RESUMEN

BACKGROUND: Peanut (Arachis hypogaea), a vital oil and food crop globally, is susceptible to web blotch which is a significant foliar disease caused by Phoma arachidicola Marasas Pauer&Boerema leading to substantial yield losses in peanut production. Calcium treatment has been found to enhance plant resistance against pathogens. RESULTS: This study investigates the impact of exogenous calcium on peanut resistance to web blotch and explores its mechanisms. Greenhouse experiments revealed that exogenous calcium treatment effectively enhanced resistance to peanut web blotch. Specifically, amino acid calcium and sugar alcohol calcium solutions demonstrated the best induced resistance effects, achieving reduction rates of 61.54% and 60% in Baisha1016, and 53.94% and 50% in Luhua11, respectively. All exogenous calcium treatments reduced malondialdehyde (MDA) and relative electrical conductivity (REC) levels in peanut leaves, mitigating pathogen-induced cell membrane damage. Exogenous calcium supplementation led to elevated hydrogen peroxide (H2O2) content and superoxide anion (O2∙-) production in peanut leaves, facilitating the accumulation of reactive oxygen species (ROS) crucial for plant defense responses. Amino acid calcium and sugar alcohol calcium treatments significantly boosted activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in peanut leaves. Activation of these antioxidant enzymes effectively scavenged excess ROS, maintaining ROS balance and mitigating cellular damage. CONCLUSIONS: In summary, exogenous calcium treatment triggered ROS production, which was subsequently eliminated by the activation of antioxidant enzymes, thereby reducing cell membrane damage and inducing defense responses against peanut web blotch.


Asunto(s)
Arachis , Calcio , Membrana Celular , Resistencia a la Enfermedad , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Arachis/metabolismo , Arachis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Ascomicetos/fisiología , Hojas de la Planta/metabolismo , Peróxido de Hidrógeno/metabolismo
6.
J Nucl Med ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871388

RESUMEN

The development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors. Methods: We synthesized a series of neurotensin antagonists bearing MA linkers and metal chelators. The MA unit is hypothesized to establish a strong interaction with the cell membrane, and the addition of a second chelator may enhance water solubility, consequently reducing liver uptake. Small-animal PET/CT imaging of [64Cu]Cu-DOTA-SR-3MA, [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, [64Cu]Cu-NT-CB-DOTA, and [64Cu]Cu-NT-Sarcage was acquired at 1, 4, 24, and 48 h after injection using H1299 tumor models. [55Co]Co-NT-CB-NOTA was also tested in HT29 (high NTSR-1 expression) and Caco2 (low NTSR-1 expression) colorectal adenocarcinoma tumor models. Saturation binding assay and internalization of [55Co]Co-NT-CB-NOTA were used to test tracer specificity and internalization in HT29 cells. Results: In vivo PET imaging with [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, and [55Co]Co-NT-CB-NOTA revealed high tumor uptake, high tumor-to-background contrast, and sustained tumor retention (≤48 h after injection) in NTSR-1-positive tumors. Tumor uptake of [64Cu]Cu-NT-CB-NOTA remained at 76.9% at 48 h after injection compared with uptake 1 h after injection in H1299 tumor models, and [55Co]Co-NT-CB-NOTA was retained at 60.2% at 24 h compared with uptake 1 h after injection in HT29 tumor models. [64Cu]Cu-NT-Sarcage also showed high tumor uptake with low background and high tumor retention 48 h after injection Conclusion: Tumor uptake and pharmacokinetic properties of NTSR-1-targeting radiopharmaceuticals were greatly improved when attached with different nitrogen-containing macrocyclic moieties. The study results suggest that NT-CB-NOTA labeled with either 64Cu/67Cu, 55Co/58mCo, or 68Ga (effect of 177Lu in tumor to be determined in future studies) and NT-Sarcage labeled with 64Cu/67Cu or 55Co/58mCo may be excellent diagnostic and therapeutic radiopharmaceuticals targeting NTSR-1-positive cancers. Also, the introduction of MA units to other ligands is warranted in future studies to test the generality of this approach.

7.
Autophagy ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869076

RESUMEN

Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored. Here, we find that CCDC50, a highly expressed autophagy receptor in brain, is recruited to proteotoxic stresses-induced polyubiquitinated protein aggregates and ectopically expressed aggregation-prone proteins. CCDC50 recognizes and further clears these cytotoxic aggregates through autophagy. The ectopic expression of CCDC50 increases the tolerance to stress-induced proteotoxicity and hence improved cell survival in neuron cells, whereas CCDC50 deficiency caused accumulation of lipid deposits and polyubiquitinated protein conjugates in the brain of one-year-old mice. Our study illustrates how aggrephagy receptor CCDC50 combats proteotoxic stress for the benefit of neuronal cell survival, thus suggesting a protective role in neurotoxic proteinopathy.

8.
Org Lett ; 26(20): 4308-4313, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38728659

RESUMEN

In this study, we introduce a practical methodology for the synthesis of PET probes by seamlessly combining flow chemistry with photoredox radiofluorination. The clinical PET tracer 6-[18F]FDOPA was smoothly prepared in a 24.3% non-decay-corrected yield with over 99.0% radiochemical purity (RCP) and enantiomeric excess (ee), notably by a simple cartridge-based purification. The flow chemistry-enhanced photolabeling method supplies an efficient and versatile solution for the synthesis of 6-[18F]FDOPA and for more PET tracer development.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radioisótopos de Flúor/química , Estructura Molecular , Radiofármacos/química , Radiofármacos/síntesis química , Oxidación-Reducción , Dihidroxifenilalanina/química , Dihidroxifenilalanina/síntesis química , Dihidroxifenilalanina/análogos & derivados , Procesos Fotoquímicos , Halogenación
9.
Artículo en Inglés | MEDLINE | ID: mdl-38771516

RESUMEN

PURPOSE: Accumulating evidence suggests that neurotensin (NTS) and neurotensin receptors (NTSRs) play key roles in lung cancer progression by triggering multiple oncogenic signaling pathways. This study aims to develop Cu-labeled neurotensin receptor 1 (NTSR1)-targeting agents with the potential for both imaging and therapeutic applications. METHOD: A series of neurotensin receptor antagonists (NRAs) with variable propylamine (PA) linker length and different chelators were synthesized, including [64Cu]Cu-CB-TE2A-iPA-NRA ([64Cu]Cu-4a-c, i = 1, 2, 3), [64Cu]Cu-NOTA-2PA-NRA ([64Cu]Cu-4d), [64Cu]Cu-DOTA-2PA-NRA ([64Cu]Cu-4e, also known as [64Cu]Cu-3BP-227), and [64Cu]Cu-DOTA-VS-2PA-NRA ([64Cu]Cu-4f). The series of small animal PET/CT were conducted in H1299 lung cancer model. The expression profile of NTSR1 was also confirmed by IHC using patient tissue samples. RESULTS: For most of the compounds studied, PET/CT showed prominent tumor uptake and high tumor-to-background contrast, but the tumor retention was strongly influenced by the chelators used. For previously reported 4e, [64Cu]Cu-labeled derivative showed initial high tumor uptake accompanied by rapid tumor washout at 24 h. The newly developed [64Cu]Cu-4d and [64Cu]Cu-4f demonstrated good tumor uptake and tumor-to-background contrast at early time points, but were less promising in tumor retention. In contrast, our lead compound [64Cu]Cu-4b demonstrated 9.57 ± 1.35, 9.44 ± 2.38 and 9.72 ± 4.89%ID/g tumor uptake at 4, 24, and 48 h p.i., respectively. Moderate liver uptake (11.97 ± 3.85, 9.80 ± 3.63, and 7.72 ± 4.68%ID/g at 4, 24, and 48 h p.i.) was observed with low uptake in most other organs. The PA linker was found to have a significant effect on drug distribution. Compared to [64Cu]Cu-4b, [64Cu]Cu-4a had a lower background, including a greatly reduced liver uptake, while the tumor uptake was only moderately reduced. Meanwhile, [64Cu]Cu-4c showed increased uptake in both the tumor and the liver. The clinical relevance of NTSR1 was also demonstrated by the elevated tumor expression in patient tissue samples. CONCLUSIONS: Through the side-by-side comparison, [64Cu]Cu-4b was identified as the lead agent for further evaluation based on its high and sustained tumor uptake and moderate liver uptake. It can not only be used to efficiently detect NTSR1 expression in lung cancer (for diagnosis, patient screening, and treatment monitoring), but also has the great potential to treat NTSR-positive lesions once chelating to the beta emitter 67Cu.

10.
Inflamm Res ; 73(6): 945-960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587532

RESUMEN

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.


Asunto(s)
Depresión , Hipocampo , Quempferoles , Lipopolisacáridos , Mastocitos , Factores de Transcripción NFATC , Quercetina , Animales , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Factores de Transcripción NFATC/metabolismo , Quempferoles/farmacología , Quempferoles/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Quercetina/farmacología , Quercetina/uso terapéutico , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/metabolismo , Línea Celular , Transducción de Señal/efectos de los fármacos , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
11.
Aging (Albany NY) ; 16(6): 5601-5617, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38535989

RESUMEN

RNA modifications have been substantiated to regulate the majority of physiological activities in the organism, including the metabolism of reactive oxygen species (ROS), which plays an important role in cells. As for the effect of RNA modification genes on ROS metabolism in glioblastoma (GBM), it has not been studied yet. Therefore, this study aims to screen the RNA modification genes that are most related to ROS metabolism and explore their effects on the biological behavior of GBM in vitro. Here, an association between WTAP and ROS metabolism was identified by bioinformatics analysis, and WTAP was highly expressed in GBM tissue compared with normal brain tissue, which was confirmed by western blotting and immunohistochemical staining. When using a ROS inducer to stimulate GBM cells in the WTAP overexpression group, the ROS level increased more significantly and the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) also increased. Next, colony formation assay, wound healing assay, and transwell assay were performed to investigate the proliferation, migration, and invasion of GBM cells. The results showed that WTAP, as an oncogene, promoted the malignant progression of GBM cells. Functional enrichment analysis predicted that WTAP was involved in the regulation of tumor/immune-related functional pathways. Western blotting was used to identify that WTAP had a regulatory effect on the phosphorylation of PI3K/Akt signaling. Finally, based on functional enrichment analysis, we further performed immune-related analysis on WTAP. In conclusion, this study analyzed WTAP from three aspects, which provided new ideas for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral/genética , Proliferación Celular/genética , Neoplasias Encefálicas/patología , ARN , Línea Celular Tumoral , Factores de Empalme de ARN , Proteínas de Ciclo Celular/metabolismo
12.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38404917

RESUMEN

Sex pheromone recognition is essential for mating in many insects and plays a major role in maintaining reproductive barriers. A previous study from our lab reported the evolutionary history of the pheromone receptor OR5 in Spodoptera moths. Using heterologous expression in Xenopus oocytes and site-directed mutagenesis, we found that eight amino acid substitutions were sufficient to recapitulate the evolution from an ancestral broadly-tuned to a highly specific receptor. Here, we confirmed this result using expression in Drosophila olfactory neurons. This further confirmed that multiple amino acid changes explain the shift in tuning breadth of Spodoptera OR5 during evolution.

13.
J Am Chem Soc ; 146(10): 6773-6783, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421958

RESUMEN

The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.


Asunto(s)
Hidrocarburos Fluorados , Propanoles , Proteínas , Triptófano , Proteínas/química , Péptidos , Catálisis
14.
Bioconjug Chem ; 35(3): 412-418, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38411531

RESUMEN

Cobalt-sarcophagine complexes exhibit high kinetic inertness under various stringent conditions, but there is limited literature on radiolabeling and in vivo positron emission tomography (PET) imaging using no carrier added 55Co. To fill this gap, this study first investigates the radiolabeling of DiAmSar (DSar) with 55Co, followed by stability evaluation in human serum and EDTA, pharmacokinetics in mice, and a direct comparison with [55Co]CoCl2 to assess differences in pharmacokinetics. Furthermore, the radiolabeling process was successfully used to generate the NTSR1-targeted PET agent [55Co]Co-NT-Sarcage (a DSar-functionalized SR142948 derivative) and administered to HT29 tumor xenografted mice. The [55Co]Co-DSar complex can be formed at 37 °C with purity and stability suitable for preclinical in vivo radiopharmaceutical applications, and [55Co]Co-NT-Sarcage demonstrated prominent tumor uptake with a low background signal. In a direct comparison with [64Cu]Cu-NT-Sarcage, [55Co]Co-NT-Sarcage achieved a higher tumor-to-liver ratio but with overall similar biodistribution profile. These results demonstrate that Sar would be a promising chelator for constructing Co-based radiopharmaceuticals including 55Co for PET and 58mCo for therapeutic applications.


Asunto(s)
Radioisótopos de Cobalto , Ciclotrones , Neoplasias , Humanos , Animales , Ratones , Distribución Tisular , Xenoinjertos , Radioisótopos de Cobre/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Línea Celular Tumoral
15.
ACS Appl Mater Interfaces ; 16(7): 9436-9442, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38320754

RESUMEN

Recently, bioinspired fluorescent materials have drawn ever-increasing attention due to their ecofriendliness and easy accessibility. Herein, we demonstrate that anthraquinone/metal ion coordination complexes can form well-defined crystals and possess obvious fluorescence enhancement properties. The fluorescence quantum yields of anthraquinone/metal ion assemblies are more than 2 orders of magnitude compared to those of anthraquinone assemblies. The electronic structures of the first excited singlet states of anthraquinone/metal ion molecules are obtained, and the mechanism of the fluorescence enhancement is elucidated. Such photoluminescent anthraquinone/metal ion crystals can be considered as efficient phosphors in fabricating light-emitting diodes. This work provides a simple route for the development of highly efficient natural fluorescent materials.

16.
Molecules ; 29(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257401

RESUMEN

The small-molecule iododiflunisal (IDIF) is a transthyretin (TTR) tetramer stabilizer and acts as a chaperone of the TTR-Amyloid beta interaction. Oral administration of IDIF improves Alzheimer's Disease (AD)-like pathology in mice, although the mechanism of action and pharmacokinetics remain unknown. Radiolabeling IDIF with positron or gamma emitters may aid in the in vivo evaluation of IDIF using non-invasive nuclear imaging techniques. In this work, we report an isotopic exchange reaction to obtain IDIF radiolabeled with 18F. [19F/18F]exchange reaction over IDIF in dimethyl sulfoxide at 160 °C resulted in the formation of [18F]IDIF in 7 ± 3% radiochemical yield in a 20 min reaction time, with a final radiochemical purity of >99%. Biodistribution studies after intravenous administration of [18F]IDIF in wild-type mice using positron emission tomography (PET) imaging showed capacity to cross the blood-brain barrier (ca. 1% of injected dose per gram of tissue in the brain at t > 10 min post administration), rapid accumulation in the liver, long circulation time, and progressive elimination via urine. Our results open opportunities for future studies in larger animal species or human subjects.


Asunto(s)
Enfermedad de Alzheimer , Diflunisal/análogos & derivados , Humanos , Animales , Ratones , Preparaciones Farmacéuticas , Distribución Tisular , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Prealbúmina , Péptidos beta-Amiloides , Excipientes
17.
ACS Biomater Sci Eng ; 10(2): 863-874, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38240580

RESUMEN

The exploration of short peptide-based assembly is vital for understanding protein-misfolding-associated diseases and seeking strategies to attenuate aggregate formation. While, the molecular mechanism of their structural evolution remains poorly studied in view of the dynamic and unpredictable assembly process. Herein, infrared (IR) spectroscopy, which serves as an in situ and real-time analytical technique, was intelligently employed to investigate the mechanism of phase transition and aggregate formation during the dynamic assembly process of diphenylalanine. Combined with other spectroscopy and electron microscopy technologies, three stages of gel formation and the main driving forces in different stages were revealed. A variety of stoichiometric methods such as continuous wavelet transform, principal component analysis, and two-dimensional correlation spectroscopy techniques were conducted to analyze the original time-dependent IR spectra to obtain detailed information on the changes in the amide bands and hydration layer. The microenvironment of hydrogen bonding among amide bands was significantly changed with the addition of pyridine derivatives, resulting in great differences in the properties of co-assembled gels. This work not only provides a universal analytical way to reveal the dynamic assembly process of dipeptide-based supramolecular gel but also expands their applications in supramolecular regulation and high-throughput screens in situ.


Asunto(s)
Dipéptidos , Péptidos , Dipéptidos/química , Péptidos/química , Geles/química , Espectrofotometría Infrarroja , Amidas
18.
J Surg Res ; 293: 618-624, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837817

RESUMEN

INTRODUCTION: Current imaging techniques have several limitations in detecting parathyroid glands. We have investigated the calcium-sensing receptor (CaSR) as a potential target for specifically labeling parathyroid glands for radiologic detection. For accurate imaging it is vital that a large differential expression exists between the target tissue and adjacent structures. We sought to investigate the relative abundance of the CaSR in normal and abnormal parathyroid tissue, as well as normal and abnormal thyroid. METHODS: Existing clinical specimens were selected that represented a wide variety of pathologically and clinically confirmed malignant and benign thyroid and parathyroid specimens. Sections were stained for the CaSR using immunohistochemistry and scored for intensity and abundance of expression. (H score = intensity scored from 0 to 3 multiplied by the % of cells at each intensity. Range 0-300). RESULTS: All parathyroid specimens expressed the CaSR to a high degree. Normal parathyroid had the highest H score (271, s.d. 25.4). Abnormal parathyroid specimens were slightly lower but still much higher than normal thyroid (H score 38.3, s.d. 23.3). Medullary thyroid cancer also expressed the CaSR significantly higher than normal thyroid (H score 182, s.d. 69.1, P < 0.001) but below parathyroid levels. Hürthle cell carcinoma expressed the CaSR to a lesser degree but higher than normal thyroid (H score 101, s.d. 46.4, P = 0.0037). CONCLUSIONS: The CaSR is differentially expressed on parathyroid tissue making it a feasible target for parathyroid imaging. False positives might be anticipated with medullary and Hürthle cell cancers.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias de la Tiroides , Humanos , Carcinoma Neuroendocrino/patología , Glándulas Paratiroides/diagnóstico por imagen , Glándulas Paratiroides/metabolismo , Receptores Sensibles al Calcio/análisis , Receptores Sensibles al Calcio/metabolismo , Neoplasias de la Tiroides/patología
19.
PeerJ ; 11: e16238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077416

RESUMEN

Background: Spodoptera litura (tobacco caterpillar, S. litura) is a pest of great economic importance due to being a polyphagous and world-distributed agricultural pest. However, agricultural practices involving chemical pesticides have caused resistance, resurgence, and residue problems, highlighting the need for new, environmentally friendly methods to control the spread of S. litura. Aim: This study aimed to investigate the gut poisoning of grayanotoxin I, an active compound found in Pieris japonica, on S. litura, and to explore the underlying mechanisms of these effects. Methods: S. litura was cultivated in a laboratory setting, and their survival rate, growth and development, and pupation time were recorded after grayanotoxin I treatment. RNA-Seq was utilized to screen for differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the functions of these DEGs. ELISA was employed to analyze the levels of lipase, 3-hydroxyacyl-CoA dehydrogenase (HOAD), and acetyl-CoA carboxylase (ACC). Hematoxylin and Eosin (H & E) staining was used to detect the development of the fat body. Results: Grayanotoxin I treatment significantly suppressed the survival rate, growth and development, and pupation of S. litura. RNA-Seq analysis revealed 285 DEGs after grayanotoxin I exposure, with over 16 genes related to lipid metabolism. These 285 DEGs were enriched in the categories of cuticle development, larvae longevity, fat digestion and absorption. Grayanotoxin I treatment also inhibited the levels of FFA, lipase, and HOAD in the hemolymph of S. litura. Conclusion: The results of this study demonstrated that grayanotoxin I inhibited the growth and development of S. litura. The mechanisms might, at least partly, be related to the interference of lipid synthesis, lipolysis, and fat body development. These findings provide valuable insights into a new, environmentally-friendly plant-derived insecticide, grayanotoxin I, to control the spread of S. litura.


Asunto(s)
Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Animales , Spodoptera , Metabolismo de los Lípidos/genética , Perfilación de la Expresión Génica/métodos , Lipasa/farmacología
20.
Front Immunol ; 14: 1284334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942324

RESUMEN

Objective: The aim of this study was to explore the safety and efficacy of multiple peptide-pulsed autologous dendritic cells (DCs) combined with cytotoxic T lymphocytes (CTLs) in patients with cancer. Methods: Five patients diagnosed with cancer between November 2020 and June 2021 were enrolled and received DC-CTLs therapy. Peripheral blood was collected and antigenic peptides were analyzed. The phenotype and function of DC-CTLs and the immune status of patients were detected using flow cytometry or IFN-γ ELISPOT analysis. Results: DCs acquired a mature phenotype and expressed high levels of CD80, CD86, CD83, and HLA-DR after co-culture with peptides, and the DC-CTLs also exhibited high levels of IFN-γ. Peripheral blood mononuclear cells from post-treatment patients showed a stronger immune response to peptides than those prior to treatment. Importantly, four of five patients maintained a favorable immune status, of which one patient's disease-free survival lasted up to 28.2 months. No severe treatment-related adverse events were observed. Conclusion: Our results show that multiple peptide-pulsed DCs combined with CTLs therapy has manageable safety and promising efficacy for cancer patients, which might provide a precise immunotherapeutic strategy for cancer.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Humanos , Leucocitos Mononucleares , Neoplasias/terapia , Péptidos , Células Dendríticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA