Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Sci Technol ; 58(21): 9456-9465, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38745405

RESUMEN

The elimination of uranium from radioactive wastewater is crucial for the safe management and operation of environmental remediation. Here, we present a layered vanadate with high acid/base stability, [Me2NH2]V3O7, as an excellent ion exchanger capturing uranyl from highly complex aqueous solutions. The material possesses an indirect band gap, ferromagnetic characteristic and a flower-like morphology comprising parallel nanosheets. The layered structure of [Me2NH2]V3O7 is predominantly upheld by the H-bond interaction between anionic framework [V3O7]nn- and intercalated [Me2NH2]+. The [Me2NH2]+ within [Me2NH2]V3O7 can be readily exchanged with UO22+. [Me2NH2]V3O7 exhibits high exchange capacity (qm = 176.19 mg/g), fast kinetics (within 15 min), high removal efficiencies (>99%), and good selectivity against an excess of interfering ions. It also displays activity for UO22+ ion exchange over a wide pH range (2.00-7.12). More importantly, [Me2NH2]V3O7 has the capability to effectively remove low-concentration uranium, yielding a residual U concentration of 13 ppb, which falls below the EPA-defined acceptable limit of 30 ppb in typical drinking water. [Me2NH2]V3O7 can also efficiently separate UO22+ from Cs+ or Sr2+ achieving the highest separation factors (SFU/Cs of 589 and SFU/Sr of 227) to date. The BOMD and DFT calculations reveal that the driving force of ion exchange is dominated by the interaction between UO22+ and [V3O7]nn-, whereas the ion exchange rate is influenced by the mobility of UO22+ and [Me2NH2]+. Our experimental findings indicate that [Me2NH2]V3O7 can be considered as a promising uranium scavenger for environmental remediation. Additionally, the simulation results provide valuable mechanistic interpretations for ion exchange and serve as a reference for designing novel ion exchangers.


Asunto(s)
Uranio , Vanadatos , Uranio/química , Vanadatos/química , Intercambio Iónico , Contaminantes Radiactivos del Agua/química , Cinética
2.
Nat Hum Behav ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740989

RESUMEN

Much of what we remember is not because of intentional selection, but simply a by-product of perceiving. This raises a foundational question about the architecture of the mind: how does perception interface with and influence memory? Here, inspired by a classic proposal relating perceptual processing to memory durability, the level-of-processing theory, we present a sparse coding model for compressing feature embeddings of images, and show that the reconstruction residuals from this model predict how well images are encoded into memory. In an open memorability dataset of scene images, we show that reconstruction error not only explains memory accuracy, but also response latencies during retrieval, subsuming, in the latter case, all of the variance explained by powerful vision-only models. We also confirm a prediction of this account with 'model-driven psychophysics'. This work establishes reconstruction error as an important signal interfacing perception and memory, possibly through adaptive modulation of perceptual processing.

3.
Inorg Chem ; 63(24): 11369-11380, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38818647

RESUMEN

Under xenon lamps, ZnFe2O4 (ZFO) has been shown to be effective in removing uranium through photocatalysis. However, its performance is still inadequate in low-light environments due to low photon utilization and high electron-hole complexation. Herein, S-doped hollow ZnFe2O4 microcubes (Sx-H-ZFO, x = 1, 3, 6, 9) were synthesized using the MOF precursor template method. The hollow morphology improves the utilization of visible light by refracting and reflecting the incident light multiple times within the confined domain. S doping narrows the band gap and shifts the conduction band position negatively, which enhances the separation, migration, and accumulation of photogenerated charges. Additionally, S doping increases the number of adsorption sites, ultimately promoting efficient surface reactions. Consequently, Sx-H-ZFO is capable of removing U(VI) in low-light environments. Under cloudy and rainy weather conditions, the photocatalytic rate of S3-H-ZFO was 100.31 µmol/(g·h), while under LED lamps (5000 Lux) it was 72.70 µmol/(g·h). More interestingly, a systematic mechanistic investigation has revealed that S doping replaces some of the oxygen atoms to enhance electron transfers and adsorption of O2. This process initiates the formation of hydrogen peroxide, which reacts directly with UO22+ to form solid studtite (UO2)O2·2H2O. Additionally, the promising magnetic separation capability of Sx-H-ZFO facilitates the recycling and reusability of the material. This work demonstrates the potential of ZnFe2O4 extraction uranium from nuclear wastewater.

4.
Nat Commun ; 15(1): 3086, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600063

RESUMEN

Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.


Asunto(s)
Prótesis Visuales , Biónica , Retina , Visión Ocular , Percepción Visual
5.
J Nanobiotechnology ; 22(1): 161, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589895

RESUMEN

Antibiotic resistance has garnered significant attention due to the scarcity of new antibiotics in development. Protoporphyrin IX (PpIX)-mediated photodynamic therapy shows promise as a novel antibacterial strategy, serving as an alternative to antibiotics. However, the poor solubility of PpIX and its tendency to aggregate greatly hinder its photodynamic efficacy. In this study, we demonstrate that alkylated EDTA derivatives (aEDTA), particularly C14-EDTA, can enhance the solubility of PpIX by facilitating its dispersion in aqueous solutions. The combination of C14-EDTA and PpIX exhibits potent antibacterial activity against Staphylococcus aureus (S. aureus) when exposed to LED light irradiation. Furthermore, this combination effectively eradicates S. aureus biofilms, which are known to be strongly resistant to antibiotics, and demonstrates high therapeutic efficacy in an animal model of infected ulcers. Mechanistic studies reveal that C14-EDTA can disrupt PpIX crystallization, increase bacterial membrane permeability and sequester divalent cations, thereby improving the accumulation of PpIX in bacteria. This, in turn, enhances reactive oxygen species (ROS) production and the antibacterial photodynamic activity. Overall, this effective strategy holds great promise in combating antibiotic-resistant strains.


Asunto(s)
Fotoquimioterapia , Staphylococcus aureus , Animales , Protoporfirinas/farmacología , Ácido Edético/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
6.
Inorg Chem ; 63(13): 5931-5944, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490189

RESUMEN

Piezoelectric-photocatalysis is distinguished by its piezoelectricity as an external force that induces deformation within the catalyst to engender a polarized electric field compared to conventional photocatalysis. Herein, the piezoelectric photocatalyst BiOBr has been expertly synthesized via a plasma process and applied for piezoelectric-photocatalysis removal of uranium(VI) for the first time. The abundant surface oxygen vacancies (OVs) could induce a dipole moment and built-in electric field, which endows BiOBr with excellent separation and transport efficiency of photogenerated charges to actuate more charges to participate in the piezoelectric-photocatalytic reduction process. Consequently, under visible light and ultrasound (150 W and 40 kHz), the removal rate constant of OVs-BiOBr-30 (0.0306 min-1) was 2.4, 30.6, and 6 times higher than those of BiOBr (0.01273 min-1), ultrasound, or photocatalysis, respectively. The piezoelectric-photocatalytic synergy is also universal for BiOX (X = Cl, Br, or I) to accelerate the reduction rate of uranium(VI). This work highlights the role of piezoelectric-photocatalysis in the treatment of uranium-containing wastewater, which is of great significance for resource conservation and environmental remediation.

7.
Mater Today Bio ; 24: 100942, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38283983

RESUMEN

Nerve guidance conduits (NGCs) have been widely accepted as a promising strategy for peripheral nerve regeneration. Fabricating ideal NGCs with good biocompatibility, biodegradability, permeability, appropriate mechanical properties (space maintenance, suturing performance, etc.), and oriented topographic cues is still current research focus. From the perspective of translation, the technique stability and scalability are also an important consideration for industrial production. Recently, blow-spinning technique shows great potentials in nanofibrous scaffolds fabrication, possessing high quality, high fiber production rates, low cost, ease of maintenance, and high reliability. In this study, we proposed for the first time the preparation of a novel NGC via blow-spinning technique to obtain optimized performances and high productivity. A new collagen nanofibrous neuro-tube with the bilayered design was developed, incorporating inner oriented and outer random topographical cues. The bilayer structure enhances the mechanical properties of the conduit in dry and wet, displaying good radial support and suturing performance. The porous nature of the blow-spun collagen membrane enables good nutrient delivery and metabolism. The in vitro and in vivo evaluations indicated the bilayer-structure conduit could promoted Schwann cells growth, neurotrophic factors secretion, and axonal regeneration and motor functional recovery in rat.

8.
Protein Cell ; 15(3): 207-222, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37758041

RESUMEN

Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.


Asunto(s)
Células Madre Pluripotentes , Primates , Animales , Macaca fascicularis , Ingeniería Celular , Desarrollo Embrionario
9.
Small ; : e2306557, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063820

RESUMEN

Ionogels are extremely soft ionic materials that can undergo large deformation while maintaining their structural and functional integrity. Ductile ionogels can absorb energy and resist fracture under external load, making them an ideal candidate for wearable electronics, soft robotics, and protective gear. However, developing high-modulus ionogels with extreme toughness remains challenging. Here, a facile one-step photopolymerization approach to construct an acrylic acid (AA)-2-hydroxyethylacrylate (HEA)-choline chloride (ChCl) eutectogel (AHCE) with ultrahigh modulus and toughness is reported. With rich hydrogen bonding crosslinks and phase segregation, this gel has a 99.1 MPa Young's modulus and a 70.6 MJ m-3 toughness along with 511.4% elongation, which can lift 12 000 times its weight. These features provide extreme damage resistance and electrical healing ability, offering it a protective and strain-sensitive coating to innovate anticutting fabric with motion detection for human healthcare. The work provides an effective strategy to construct robust ionogel materials and smart wearable electronics for intelligent life.

10.
Analyst ; 148(21): 5361-5365, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37755232

RESUMEN

Stereochemical comparability is critical for ensuring manufacturing consistency in therapeutic phosphorothioate oligonucleotides. Currently, analytical methods for this assessment are limited. We hereby report on a novel protocol capable of detecting a stereochemistry change in a single phosphorothioate linkage by employing nuclease P1 digestion of the oligonucleotide with subsequent LCMS analysis of the resulting fragments. The method proves valuable for establishing stereochemical comparability and for ensuring manufacturing consistency of oligonucleotide therapeutics.

11.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37512644

RESUMEN

The single-cell triboelectric nanogenerator (TENG) often produces insufficient energy, leading to the use of a multicellular TENG structure. This work experimented with and simulated a dual-cell TENG with various configurations in parallel and series arrangements. The working principle of charge generation during each phase of a contact-separation cycle was explained through the analysis and comparison of five electrical configurations of a dual-cell TENG. Our observations indicate that measuring the output charge of a TENG provides a more reliable performance comparison. Finally, multicellular TENG with four cells arranged in an X-shape (X-TENG), self-supporting structure is fabricated and further experimented with, validating our conjectures derived from a dual-cell TENG.

12.
Front Neurol ; 14: 1140497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181557

RESUMEN

Background and purpose: Data on in-stent stenosis (ISS) following the flow diverter (FD) implantation method are scarce and inconsistent. In the present study, we sought to determine the incidence of ISS and identify the factors that predict its severity via the use of ordinal logistic regression. Methods: A retrospective review of our center's electronic database was conducted to identify all patients with intracranial aneurysms (IAs) who received pipeline embolization device (PED) implantation between 2016 and 2020. Patient demographics, aneurysm characteristics, procedural information, and clinical and angiographic outcomes were reviewed. ISS was quantitatively assessed on angiographic follow-ups and graded as mild (<25%), moderate (25-50%), or severe (>50%). Ordinal logistic regression was conducted to determine the predictors of stenosis severity. Results: A total of 240 patients with 252 aneurysms treated in 252 procedures were enrolled in this study. ISS has been detected in 135 (53.6%) lesions, with a mean follow-up time of 6.53 ± 3.26 months. The ISS was mild in 66 (48.9%) cases, moderate in 52 (38.5%) cases, and severe in 17 (12.6%) cases. All patients were asymptomatic, except for two of them with severe stenosis who presented with symptoms of acute cerebral thrombosis. Ordinal logistic regression identified that younger age and a longer procedure duration were independent predictors of a higher likelihood of ISS. Conclusion: ISS is a common angiographic finding after PED implantation for IAs and is presented as a largely benign course through long-term follow-up. Patients who were younger in age and had a longer procedure duration were found to be at a greater risk of developing ISS.

13.
Front Immunol ; 14: 1132719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063839

RESUMEN

Background: Observational studies have suggested the association between atopic dermatitis (AD) and the risks of autoimmune diseases. It is still unclear, however, whether or in which direction causal relationships exist, because these associations could be confounded. Objectives: Our study seeks to assess the possibility of AD as a cause of autoimmune diseases, and to estimate the magnitude of the causal effect. Methods: Two-sample mendelian randomization (MR) analyses were performed using genome-wide association study (GWAS) summary-level statistics. Specifically, bidirectional MR analyses were conducted to examine the direction of association of AD with autoimmune diseases; multivariable MR analyses (MVMR1) were used to test the independence of causal association of AD with autoimmune diseases after controlling other atopic disorders (asthma and allergic rhinitis), while MVMR2 analyses were conducted to account for potential confounding factors such as smoking, drinking, and obesity. Genetic instruments for AD (Ncases=22 474) were from the latest GWAS meta-analysis. The GWAS summary data for asthma and allergic rhinitis were obtained from UK Biobank. The GWAS summary data for smoking, alcohol consumption, obesity and autoimmune diseases (alopecia areata, vitiligo, systemic lupus erythematosus, ankylosing spondylitis, rheumatoid arthritis, and type 1 diabetes) were selected from the largest GWASs available. Causal estimates were derived by the inverse-variance weighted method and verified through a series of sensitivity analyses. Results: Genetically predicted AD linked to higher risks of rheumatoid arthritis (OR, 1.28; P=0.0068) (ORMVMR1, 1.65; P=0.0020) (ORMVMR2, 1.36; P<0.001), type 1 diabetes (OR, 1.37; P=0.0084) (ORMVMR1, 1.42; P=0.0155) (ORMVMR2, 1.45; P=0.002), and alopecia areata (OR, 1.98; P=0.0059) (ORMVMR1, 2.55; P<0.001) (ORMVMR2, 1.99; P=0.003) in both univariable and multivariable MR. These causal relationships were supported by sensitivity analyses. No causal effect of AD was identified in relation to systemic lupus erythematosus, vitiligo, and ankylosing spondylitis. Concerning the reverse directions, no significant association was noted. Conclusion: The results of this MR study provide evidence to support the idea that AD causes a greater risk of rheumatoid arthritis, type 1 diabetes and alopecia areata. Further replication in larger samples is needed to validate our findings, and experimental studies are needed to explore the underlying mechanisms of these causal effects.


Asunto(s)
Enfermedades Autoinmunes , Dermatitis Atópica , Humanos , Alopecia Areata , Artritis Reumatoide , Asma/epidemiología , Asma/genética , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/genética , Dermatitis Atópica/epidemiología , Dermatitis Atópica/genética , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/genética , Estudio de Asociación del Genoma Completo , Lupus Eritematoso Sistémico , Análisis de la Aleatorización Mendeliana , Obesidad , Rinitis Alérgica/epidemiología , Rinitis Alérgica/genética , Espondilitis Anquilosante , Vitíligo
14.
J Hazard Mater ; 452: 131248, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963194

RESUMEN

Effective spatial separation and utilization of photogenerated charges are critical for photocatalysis process. Herein, novel Co3O4 @TiO2 @CdS@Au double-shelled nanocage (CTCA) with spatially separated redox centers was synthesized by loading Co3O4 and Au NP cocatalysts on the inner and outer surfaces of Z-scheme heterojunction (TiO2 @CdS). The reduction rate constant of U(VI) by CTCA reached 0.218 min-1 under simulated sunlight irradiation, which was 6.6, 3.2 and 36.3 times than that of monolayer CTCA (0.033 min-1), CTC (0.068 min-1) and CT (0.006 min-1). The full-spectrum light-assisted photothermal catalytic performance can enable CTCA to remove 98.8% of U(VI) and degrade nearly 90% of five organic pollutants simultaneously. Detailed characterizations and theory calculations revealed that the photogenerated holes and electrons in CTCA flow inward and outward. More importantly, Co3O4 acts as a "nano heater" to generate the photothermal effect for further enhancing the charge transfer and accelerating the surface reaction kinetics. Meanwhile, the photogenerated electrons and superoxide radicals play a dominant role in reducing the adsorbed U(VI) to insoluble (UO2)O2·2H2O(s). This work provides valuable input toward a novel double-shelled hollow nanocage reactor with excellent photothermal catalysis ability for efficient recovery U(VI) from uranium mine wastewater to address environmental contamination issues.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36924037

RESUMEN

BACKGROUND: Observational studies have suggested associations of atopic dermatitis (AD) with conjunctivitis and other ocular surface diseases (OSDs). It is still unclear, however, whether or in which direction causal relationships exist, because these associations could be confounded. OBJECTIVE: Our study aims to examine the causal association of AD with conjunctivitis and other OSDs. METHODS: A bidirectional two-sample Mendelian randomization (MR) study was performed with genome-wide association study (GWAS) summary-level statistics. Genetic instruments for AD from a GWAS meta-analysis study conducted by the EArly Genetics & Lifecourse Epidemiology eczema consortium were used to investigate AD's relationships to conjunctivitis and other OSDs among cases from the FinnGen consortium. Genetic correlations were calculated using linkage disequilibrium score regression. Causal estimates were derived by the inverse-variance weighted method and were verified through a series of sensitivity analyses. RESULTS: Genetically predicted AD linked to higher risk of conjunctivitis (OR, 1.48; 95% CI, 1.33-1.65; p = 8.65 × 10-13 ) and allergic conjunctivitis (OR, 1.53; 95%CI, 1.31-1.77; p = 3.77 × 10-8 ), as well as atopic conjunctivitis (OR, 1.76; 95%CI, 1.24-2.52; p = 1.76 × 10-3 ). Additionally, suggestive causal effects of AD on chronic conjunctivitis (OR, 1.76; 95%CI, 1.24-2.52; p = 5.78 × 10-3 ) and keratitis (OR, 1.14; 95%CI, 1.01-1.30; p = 3.58 × 10-2 ) were found. No significant causal effect of AD was identified in relation to keratitis, keratoconus and pterygium. Concerning the reverse directions, no significant associations were noted. CONCLUSIONS: Findings of this MR study support a causal effect between AD and conjunctivitis, but not vice versa. These findings have clinical implications for the management of AD and conjunctivitis.

16.
Small ; 19(20): e2300003, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807523

RESUMEN

Designing highly efficient photocatalysts with rapid migration of photogenerated charges and surface reaction kinetics for the photocatalytic removal of uranium (U(VI)) from uranium mine wastewater remains a significant challenge. Inspired by natural photosynthesis, a biomimetic photocatalytic system is assembled by designing a novel hollow nanosphere MnOx @TiO2 @CdS@Au (MTCA) with loading MnOx and Au nano particles (Au NPs) cocatalysts on the inner and outer surfaces of the TiO2 @CdS. The spatially separated cocatalysts efficiently drive the photogenerated charges to migrate in opposite directions, while the Z-scheme heterogeneous shell further separates the interfacial charges. Theoretical calculation identifies multiple consecutive forward charge transfers without charge recombination within MTCA. Thus, MTCA could efficiently remove 99.61% of U(VI) after 15 min of simulated sunlight irradiation within 3 mmol L-1 NaHCO3 with 0.231 min-1 of the reduction rate constant, outperforming most previously reported photocatalysts. MTCA further significantly removes 91.83% of U(VI) from the natural uranium mining wastewater under sunlight irradiation. This study provides a novel approach to designing an ideal biomimetic photocatalyst for remediating environmental pollution.

17.
Med Rev (2021) ; 3(4): 277-304, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38235400

RESUMEN

The remarkable similarity between non-human primates (NHPs) and humans establishes them as essential models for understanding human biology and diseases, as well as for developing novel therapeutic strategies, thereby providing more comprehensive reference data for clinical treatment. Pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells provide unprecedented opportunities for cell therapies against intractable diseases and injuries. As continue to harness the potential of these biotechnological therapies, NHPs are increasingly being employed in preclinical trials, serving as a pivotal tool to evaluate the safety and efficacy of these interventions. Here, we review the recent advancements in the fundamental research of stem cells and the progress made in studies involving NHPs.

18.
Anticancer Drugs ; 33(10): 1035-1046, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066393

RESUMEN

CircRNAs have been found to be participated in the development of numerous cancers. Nevertheless, the role of circRNAs in the progression of nonsmall cell lung cancer (NSCLC) has not been fully made clear. The purpose of our study was to study and understand the mechanism of circ_0007841 regulating the progression of NSCLC. NSCLC tissue samples and adjacent normal tissue samples used were obtained from 53 NSCLC patients. The expressions of circ_0007841, miR-199a-5p and SphK2 in all samples were detected by the real-time quantitative PCR. Then luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to analyze the relevance between circ_0007841, miR-199a-5p and SphK2. Cell Counting Kit-8, colony-forming, thymidine analog 5-ethynyl-2'-deoxyuridine assays, and transwell assay detect the effects of these three biomolecules on NSCLC carcinogenesis by western blot. We evaluate the effect of circ_0007841 on the growth of NSCLC by establishing the xenograft mice model. Experimental studies have shown that the higher expression of circ_0007841 in NSCLC tissues, and circ_0007841 strengthen cell viability, cell proliferation and cell adhesion. In addition, miR-199a-5p exerts an inhibitory effect in NSCLC cells by inhibiting SphK2. And Sphk2 regulates cell proliferation and adhesion. In addition, in-vivo silencing of circ_0007841 was found to inhibit the growth of NSCLC tumors. This research demonstrated that circ_0007841 had a positive influence in improving NSCLC development by targeting miR-199a-5p and upregulating oncogene SphK2.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Timidina
19.
Sci Adv ; 8(29): eabo3123, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867792

RESUMEN

We report the cloning of a 12-year-old transgenic green fluorescent protein (GFP) monkey by somatic cell nuclear transfer (SCNT) and base editing of the embryos, accompanied with safety evaluation of adenine base editors (ABEs). We first show the ability of ABEmax to silence GFP through A-to-G editing of the GFP sequence in 293T cells. Subsequently, using donor cells from a monkey expressing GFP, we have successfully generated 207 ABEmax-edited (SCNT-ABE) and 87 wild-type (SCNT) embryos for embryo transfer, genotyping, and genome and transcriptome analysis. SCNT-ABE and SCNT embryos are compared for off-target analysis without the interference of genetic variants using a new method named as OA-SCNT. ABEmax does not induce obvious off-target DNA mutations but induces widespread off-target RNA mutations, 35% of which are exonic, in edited monkey embryos. These results provide important references for clinical application of ABE.


Asunto(s)
Clonación de Organismos , Edición Génica , Animales , Animales Modificados Genéticamente , Clonación Molecular , Clonación de Organismos/métodos , Edición Génica/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Macaca mulatta/genética
20.
Elife ; 112022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023828

RESUMEN

Animals have evolved sophisticated visual circuits to solve a vital inference problem: detecting whether or not a visual signal corresponds to an object on a collision course. Such events are detected by specific circuits sensitive to visual looming, or objects increasing in size. Various computational models have been developed for these circuits, but how the collision-detection inference problem itself shapes the computational structures of these circuits remains unknown. Here, inspired by the distinctive structures of LPLC2 neurons in the visual system of Drosophila, we build anatomically-constrained shallow neural network models and train them to identify visual signals that correspond to impending collisions. Surprisingly, the optimization arrives at two distinct, opposing solutions, only one of which matches the actual dendritic weighting of LPLC2 neurons. Both solutions can solve the inference problem with high accuracy when the population size is large enough. The LPLC2-like solutions reproduces experimentally observed LPLC2 neuron responses for many stimuli, and reproduces canonical tuning of loom sensitive neurons, even though the models are never trained on neural data. Thus, LPLC2 neuron properties and tuning are predicted by optimizing an anatomically-constrained neural network to detect impending collisions. More generally, these results illustrate how optimizing inference tasks that are important for an animal's perceptual goals can reveal and explain computational properties of specific sensory neurons.


Asunto(s)
Simulación por Computador , Drosophila/fisiología , Red Nerviosa , Células Receptoras Sensoriales/fisiología , Animales , Drosophila/citología , Percepción de Movimiento/fisiología , Estimulación Luminosa , Células Receptoras Sensoriales/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA