Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Neoplasia ; 57: 101050, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243502

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis. A better understanding of mechanisms concerned in glioma invasion might be critical for treatment optimization. Given that epithelial-mesenchymal transition in tumor cells is closely associated with glioma progression and recurrence, identifying pivotal mediators in GBM EMT process is urgently needed. As a member of Fatty acid binding protein (FABP) family, FABP4 serves as chaperones for free fatty acids and participates in cellular process including fatty acid uptake, transport, and metabolism. In this study, our data revealed that FABP4 expression was elevated in human GBM samples and correlated with a mesenchymal glioma subtype. Gain of function and loss of function experiments indicated that FABP4 potently rendered glioma cells increased filopodia formation and cell invasiveness. Differential expression genes analysis and GSEA in TCGA dataset revealed an EMT-related molecular signature in FABP4-mediated signaling pathways. Cell interaction analysis suggested CD36 as a potential target regulated by FABP4. Furthermore, in vitro mechanistic experiments demonstrated that FABP4-induced CD36 expression promoted EMT via non-canonical TGFß pathways. An intracranial glioma model was constructed to assess the effect of FABP4 on tumor progression in vivo. Together, our findings demonstrated a critical role for FABP4 in the regulation invasion and EMT in GBM, and suggest that pharmacological inhibition of FABP4 may represent a promising therapeutic strategy for treatment of GBM.

2.
Plant Physiol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162415

RESUMEN

Polyploidization plays a crucial role in plant evolution and is becoming increasingly important in breeding. Structural variations and epigenomic repatterning have been observed in synthetic polyploidizations. However, the mechanisms underlying the occurrence and their effects on gene expression and phenotype remain unknown. Here, we investigated genome-wide large deletion/duplication regions (DelDups) and genomic methylation dynamics in leaf organs of progeny from the first eight generations of synthetic tetraploids derived from Chinese cabbage (Brassica rapa L. ssp. pekinensis) and cabbage (Brassica oleracea L. var. capitata). One- or two-copy DelDups, with a mean size of 5.70 Mb (400 kb - 65.85 Mb), occurred from the first generation of selfing and thereafter. The duplication of a fragment in one subgenome consistently coincided with the deletion of its syntenic fragment in the other subgenome, and vice versa, indicating that these DelDups were generated by homoeologous exchanges (HEs). Interestingly, the larger the genomic syntenic region, the higher the frequency of DelDups, further suggesting that the pairing of large homoeologous fragments is crucial for HEs. Moreover, we found that the active transcription of continuously distributed genes in local regions is positively associated with the occurrence of HE breakpoints. In addition, the expression of genes within DelDups exhibited a dosage effect, and plants with extra parental genomic fragments generally displayed phenotypes biased towards the corresponding parent. Genome-wide methylation fluctuated remarkably, which did not clearly affect gene expression on a large scale. Our findings provide insights into the early evolution of polyploid genomes, offering valuable knowledge for polyploidization-based breeding.

3.
Front Plant Sci ; 15: 1397018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872891

RESUMEN

The continuously refined genome assembly of the Chinese cabbage accession Chiifu is widely recognized as the reference for Brassica rapa. However, the high self-incompatibility of Chiifu limits its broader utilization. In this study, we report the development of self-compatible Chiifu lines through a meticulous marker-assisted selection (MAS) strategy, involving the substitution of the Chiifu allele of MLPK (M-locus protein kinase) with that from the self-compatible Yellow Sarson (YS). A YS-based marker (SC-MLPK) was employed to screen 841 B. rapa accessions, confirming that all eight accessions with the mlpk/mlpk (mm) genotype exhibited self-compatibility. Additionally, we designed 131 High-Resolution Melting (HRM) markers evenly distributed across the B. rapa genome as genomic background selection (GBS) markers to facilitate the introgression of self-compatibility from YS into Chiifu along with SC-MLPK. Genome background screening revealed that the BC3S1 population had a proportion of the recurrent parent genome (PR) ranging from 93.9% to 98.5%. From this population, we identified self-compatible individuals exhibiting a high number of pollen tubes penetrating stigmas (NPT) (>25) and a maximum compatibility index (CI) value of 7.5. Furthermore, we selected two individuals demonstrating significant similarity to Chiifu in both genetic background and morphological appearance, alongside self-compatibility. These selected individuals were self-pollinated to generate two novel lines designated as SC-Chiifu Lines. The development of these self-compatible Chiifu lines, together with the SC-MLPK marker and the set of HRM markers, represents valuable tools for B. rapa genetics and breeding.

4.
Hortic Res ; 11(3): uhae017, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38464474

RESUMEN

High-throughput Chromatin Conformation Capture (Hi-C) technologies can be used to investigate the three-dimensional genomic structure of plants. However, the practical utility of these technologies is impeded by significant background noise, hindering their capability in detecting fine 3D genomic structures. In this study, we optimized the Bridge Linker Hi-C technology (BL-Hi-C) to comprehensively investigate the 3D chromatin landscape of Brassica rapa and Brassica oleracea. The Bouquet configuration of both B. rapa and B. oleracea was elucidated through the construction of a 3D genome simulation. The optimized BL-Hi-C exhibited lower background noise compared to conventional Hi-C methods. Taking this advantage, we used BL-Hi-C to identify FLC gene loops in Arabidopsis, B. rapa, and B. oleracea. We observed that gene loops of FLC2 exhibited conservation across Arabidopsis, B. rapa, and B. oleracea. While gene loops of syntenic FLCs exhibited conservation across B. rapa and B. oleracea, variations in gene loops were evident among multiple paralogs FLCs within the same species. Collectively, our findings highlight the high sensitivity of optimized BL-Hi-C as a powerful tool for investigating the fine 3D genomic organization.

5.
Angew Chem Int Ed Engl ; 63(14): e202318236, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38323753

RESUMEN

The controllable photocatalytic C-C coupling of methanol to produce ethylene glycol (EG) is a highly desirable but challenging objective for replacing the current energy-intensive thermocatalytic process. Here, we develop a metal-free porous boron nitride catalyst that demonstrates exceptional selectivity in the photocatalytic production of EG from methanol under mild conditions. Comprehensive experiments and calculations are conducted to thoroughly investigate the reaction mechanism, revealing that the OB3 unit in the porous BN plays a critical role in the preferential activation of C-H bond in methanol to form ⋅CH2OH via a concerted proton-electron transfer mechanism. More prominent energy barriers are observed for the further dehydrogenation of the ⋅CH2OH intermediate on the OB3 unit, inhibiting the formation of some other by-products during the catalytic process. Additionally, a small downhill energy barrier for the coupling of ⋅CH2OH in the OB3 unit promotes the selective generation of EG. This study provides valuable insights into the underlying mechanisms and can serve as a guide for the design and optimization of photocatalysts for efficient and selective EG production under mild conditions.

6.
Free Radic Biol Med ; 213: 327-342, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38281628

RESUMEN

BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) play a dynamic role in maintaining the structure and function of blood vessels. But how these cells maintain their growth and angiogenic capacity under bone marrow hypoxic niche is still unclear. This study aims to explore the mechanisms from a perspective of cellular metabolism. METHODS: XFe96 Extracellular Flux Analyzer was used to analyze the metabolic status of EPCs. Gas Chromatography-Mass Spectrometry (GC-MS) was used to trace the carbon movement of 13C-labeled glucose and glutamine under 1 % O2 (hypoxia) and ∼20 % O2 (normoxia). Moreover, RNA interference, targeting isocitrate dehydrogenase-1 (IDH1) and IDH2, was used to inhibit the reverse tricarboxylic acid (TCA) cycle and analyze metabolic changes via isotope tracing as well as changes in cell growth and angiogenic potential under hypoxia. The therapeutic potential of EPCs under hypoxia was investigated in the ischemic hindlimb model. RESULTS: Compared with normoxic cells, hypoxic cells showed increased glycolysis and decreased mitochondrial respiration. Isotope metabolic tracing revealed that under hypoxia, the forward TCA cycle was decreased and the reverse TCA cycle was enhanced, mediating the conversion of α-ketoglutarate (α-KG) into isocitrate/citrate, and de novo lipid synthesis was promoted. Downregulation of IDH1 or IDH2 under hypoxia suppressed the reverse TCA cycle, attenuated de novo lipid synthesis (DNL), elevated α-KG levels, and decreased the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA), eventually inhibiting the growth and angiogenic capacity of EPCs. Importantly, the transplantation of hypoxia-cultured EPCs in a mouse model of limb ischemia promoted new blood vessel regeneration and blood supply recovery in the ischemic area better than the transplantation of normoxia-cultured EPCs. CONCLUSIONS: Under hypoxia, the IDH1- and IDH2-mediated reverse TCA cycle promotes glutamine-derived de novo lipogenesis and stabilizes the expression of α-KG and HIF-1α, thereby enhancing the growth and angiogenic capacity of EPCs.


Asunto(s)
Células Progenitoras Endoteliales , Animales , Ratones , Médula Ósea/metabolismo , Hipoxia de la Célula , Células Progenitoras Endoteliales/metabolismo , Glutamina/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/metabolismo , Isótopos/metabolismo , Lípidos , Lipogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Sci Rep ; 14(1): 229, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167471

RESUMEN

The reservoir computing (RC) is increasingly used to learn the synchronization behavior of chaotic systems as well as the dynamical behavior of complex systems, but it is scarcely applied in studying synchronization of non-smooth chaotic systems likely due to its complexity leading to the unimpressive effect. Here proposes a simulated annealing-based differential evolution (SADE) algorithm for the optimal parameter selection in the reservoir, and constructs an improved RC model for synchronization, which can work well not only for non-smooth chaotic systems but for smooth ones. Extensive simulations show that the trained RC model with optimal parameters has far longer prediction time than those with empirical and random parameters. More importantly, the well-trained RC system can be well synchronized to its original chaotic system as well as its replicate RC system via one shared signal, whereas the traditional RC system with empirical or random parameters fails for some chaotic systems, particularly for some non-smooth chaotic systems.

8.
Adv Mater ; 36(1): e2303287, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37973198

RESUMEN

To alleviate the greenhouse effect and address the related energy crisis, solar-driven reduction of carbon dioxide (CO2 ) to value-added products is considered as a sustainable strategy. However, the insufficient separation and rapid recombination of photogenerated charge carriers during photocatalysis greatly limit their reduction efficiency and practical application potential. Here, isolated Cobalt (Co) atoms are successfully decorated into oxygen-doped boron nitride (BN) via an in situ pyrolysis method, achieving greatly improved catalytic activity and selectivity to the carbon monoxide (CO) product. X-ray absorption fine spectroscopy demonstrates that the isolated Co atoms are stabilized by the O and N atoms with an unsaturated CoO2 N1 configuration. Further experimental investigation and theoretical simulations confirm that the decorated Co atoms not only work as the real active center during the CO2 reduction process, but also perform as the electron pump to promote the electron/hole separation and transfer, resulting in greatly accelerated reaction kinetics and improved activity. In addition, the CoO2 N1 coordination geometry is favorable to the conversion from *CO2 to *COOH, which shall be considered as a selectivity-determining step for the evolution of the CO products. The surface modulation strategy at the atomic level opens a new avenue for regulating the reaction kinetics for photocatalytic CO2 reduction.

10.
Proc Natl Acad Sci U S A ; 120(42): e2305208120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816049

RESUMEN

Polyploidization is important to the evolution of plants. Subgenome dominance is a distinct phenomenon associated with most allopolyploids. A gene on the dominant subgenome tends to express to higher RNA levels in all organs as compared to the expression of its syntenic paralogue (homoeolog). The mechanism that underlies the formation of subgenome dominance remains unknown, but there is evidence for the involvement of transposon/DNA methylation density differences nearby the genes of parents as being causal. The subgenome with lower density of transposon and methylation near genes is positively associated with subgenome dominance. Here, we generated eight generations of allotetraploid progenies from the merging of parental genomes Brassica rapa and Brassica oleracea. We found that transposon/methylation density differ near genes between the parental (rapa:oleracea) existed in the wide hybrid, persisted in the neotetraploids (the synthetic Brassica napus), but these neotetraploids expressed no expected subgenome dominance. This absence of B. rapa vs. B. oleracea subgenome dominance is particularly significant because, while there is no negative relationship between transposon/methylation level and subgenome dominance in the neotetraploids, the more ancient parental subgenomes for all Brassica did show differences in transposon/methylation densities near genes and did express, in the same samples of cells, biased gene expression diagnostic of subgenome dominance. We conclude that subgenome differences in methylated transposon near genes are not sufficient to initiate the biased gene expressions defining subgenome dominance. Our result was unexpected, and we suggest a "nuclear chimera" model to explain our data.


Asunto(s)
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Genoma de Planta/genética , Brassica rapa/genética , Brassica napus/genética , Metilación de ADN/genética , Poliploidía
11.
Theor Appl Genet ; 136(11): 224, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37845510

RESUMEN

KEY MESSAGE: Lineage-specific evolution of RCO was described in Brassicaceae. BjRCO.1 and BjRCO.2 within the complex locus regulated highly lobed-leaf formation in Brassica juncea. RCO regulates the formation of lobed leaves in Brassicaceae species. RCO originated from the duplication of LMI1-type sequences and evolved through gene duplication and loss within the Brassicaceae. However, the evolutionary process and diversification of RCO in different lineages of Brassicaceae remain unclear. Although the RCO locus in B. juncea has been associated with lobed-leaf formation, its complexity has remained largely unknown. This study involved the identification of 55 LMI1-like genes in 16 species of Brassicaceae through syntenic analysis. We classified these LMI1-like genes into two types, namely LMI1-type and RCO-type, based on their phylogenetic relationship. Additionally, we proposed two independent lineage-specific evolution routes for RCO following the divergence of Aethionema. Our findings revealed that the LMI1-like loci responsible for lobed-leaf formation in Brassica species are located on the LF subgenomes. For B. juncea (T84-66V2), we discovered that the complex locus underwent duplication through segments of nucleic acid sequence containing Exostosin-LMI1-RCO (E-R-L), resulting in the tandem presence of two RCO-type and two LMI1-type genes on chromosome A10. As additional evidence, we successfully mapped the complex locus responsible for highly lobed-leaf formation to chromosome A10 using a B. juncea F2 population, which corroborated the results of our evolutionary analysis. Furthermore, through transcriptome analysis, we clarified that BjRCO.1 and BjRCO.2 within the complex locus are functional genes involved in the regulation of highly lobed-leaf formation. The findings of this study offer valuable insights into the regulation of leaf morphology for the breeding of Brassica crops.


Asunto(s)
Planta de la Mostaza , Fitomejoramiento , Filogenia , Planta de la Mostaza/genética , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología
12.
J Hazard Mater ; 460: 132481, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690206

RESUMEN

Radioactive iodine vapors produced by nuclear fission can pose a significant risk to human health and the environment. Effective monitoring of iodine vapor leakage, capture and storage of radioactive iodine vapor are of great importance for the safety of the nuclear industry. Herein, we report a novel structure-function integrated solid iodine vapor adsorbent based on metal-modified boron nitride (BN) aerogel. Metal-modified BN aerogels incorporated with Cu/Ag nanoparticles (named as BN-Cu and BN-Ag, respectively) are successfully prepared by a metal-induced, ultrasonic-assisted, and in-situ transformation method. The metal-modified BN aerogels show improved mechanical properties in both of the maximum stress and residual deformation. Remarkably, due to the greatly enhanced "host-guest" and "guest-guest" effects by the introduction of metal nanoparticles, the BN-Cu and BN-Ag aerogels exhibit record-breaking iodine vapor adsorption capacities among inorganic adsorbents (1739.8 and 2234.13 wt% respectively), which are even higher than that of most organic adsorbents. Furthermore, an integrated iodine adsorption detection device based on metal-modified aerogels is constructed to realize real-time detection of the electrical properties of aerogels during iodine adsorption. This work provides a foundation for the development of BN aerogels as multifunctional platforms for effective iodine capture and detection. It also introduces new ideas for the use of structural-functional integrated materials in the prevention and control of radioactive iodine pollution.

13.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707440

RESUMEN

Polyploidy is recurrent across the tree of life and known as an evolutionary driving force in plant diversification and crop domestication. How polyploid plants adapt to various habitats has been a fundamental question that remained largely unanswered. Brassica napus is a major crop cultivated worldwide, resulting from allopolyploidy between unknown accessions of diploid B. rapa and B. oleracea. Here, we used whole-genome resequencing data of accessions representing the majority of morphotypes and ecotypes from the species B. rapa, B. oleracea, and B. napus to investigate the role of polyploidy during domestication. To do so, we first reconstructed the phylogenetic history of B. napus, which supported the hypothesis that the emergence of B. napus derived from the hybridization of European turnip of B. rapa and wild B. oleracea. These analyses also showed that morphotypes of swede and Siberian kale (used as vegetable and fodder) were domesticated before rapeseed (oil crop). We next observed that frequent interploidy introgressions from sympatric diploids were prominent throughout the domestication history of B. napus. Introgressed genomic regions were shown to increase the overall genetic diversity and tend to be localized in regions of high recombination. We detected numerous candidate adaptive introgressed regions and found evidence that some of the genes in these regions contributed to phenotypic diversification and adaptation of different morphotypes. Overall, our results shed light on the origin and domestication of B. napus and demonstrate interploidy introgression as an important mechanism that fuels rapid diversification in polyploid species.


Asunto(s)
Brassica napus , Gastrópodos , Animales , Brassica napus/genética , Domesticación , Filogenia , Alimentación Animal , Poliploidía
14.
Bio Protoc ; 13(17): e4810, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37719070

RESUMEN

Since the genetic transformation of Chinese cabbage (Brassica rapa) has not been well developed, in situ RT-PCR is a valuable option for detecting guard cell-specific genes. We reported an optimized protocol of in situ RT-PCR by using a FAMA homologous gene Bra001929 in Brassica rapa. FAMA in Arabidopsis has been verified to be especially expressed in guard cells. We designed specific RT-PCR primers and optimized the protocol in terms of the (a) reverse transcription time, (b) blocking time, (c) antigen-antibody incubation time, and (d) washing temperature. Our approach provides a sensitive and effective in situ RT-PCR method that can detect low-abundance transcripts in cells by elevating their levels by RT-PCR in the guard cells in Brassica rapa.

15.
Free Radic Biol Med ; 208: 88-102, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536460

RESUMEN

Expansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O2 hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs. Moreover, under hypoxia, EPCs presented higher LDH activity, which could promote the conversion of pyruvate to lactate, as well as a higher level of NAD+, Bcl2 interacting protein 3 (BNIP3) expression and mitophagy. Additionally, under hypoxia, knock-down of the LDHA subunit increased the LDH2 and LDH1 levels and knock-down of the LDHB subunit increased the LDH5 level, while the simultaneous knock-down of LDHA and LDHB reduced total LDHs and NAD+ level. Inhibition of NAD+ recycling reduced BNIP3 expression and mitophagy and promoted cell senescence. Taken together, these data demonstrated that 1% O2 hypoxia induces a shift in the LDH isozyme profile, promotes NAD+ recycling, increases BNIP3 expression and mitophagy, and reduces EPC senescence. Our findings contribute to a better understanding of the connection between hypoxic culture conditions and the senescence of bone marrow-derived EPCs and provide a novel strategy to improve in vitro expansion of EPCs.


Asunto(s)
Células Progenitoras Endoteliales , NAD , Humanos , NAD/metabolismo , Células Progenitoras Endoteliales/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Médula Ósea/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Senescencia Celular
16.
J Integr Plant Biol ; 65(6): 1467-1478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36762577

RESUMEN

Physical contact between genes distant on chromosomes is a potentially important way for genes to coordinate their expressions. To investigate the potential importance of distant contacts, we performed high-throughput chromatin conformation capture (Hi-C) experiments on leaf nuclei isolated from Brassica rapa and Brassica oleracea. We then combined our results with published Hi-C data from Arabidopsis thaliana. We found that distant genes come into physical contact and do so preferentially between the proximal promoter of one gene and the downstream region of another gene. Genes with higher numbers of conserved noncoding sequences (CNSs) nearby were more likely to have contact with distant genes. With more CNSs came higher numbers of transcription factor binding sites and more histone modifications associated with the activity. In addition, for the genes we studied, distant contacting genes with CNSs were more likely to be transcriptionally coordinated. These observations suggest that CNSs may enrich active histone modifications and recruit transcription factors, correlating with distant contacts to ensure coordinated expression. This study advances our knowledge of gene contacts and provides insights into the relationship between CNSs and distant gene contacts in plants.


Asunto(s)
Arabidopsis , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Secuencia Conservada/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Genoma de Planta
17.
Plant Biotechnol J ; 21(5): 1022-1032, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36688739

RESUMEN

Brassica rapa comprises many important cultivated vegetables and oil crops. However, Chiifu v3.0, the current B. rapa reference genome, still contains hundreds of gaps. Here, we presented a near-complete genome assembly of B. rapa Chiifu v4.0, which was 424.59 Mb with only two gaps, using Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C technologies. The new assembly contains 12 contigs, with a contig N50 of 38.26 Mb. Eight of the ten chromosomes were entirely reconstructed in a single contig from telomere to telomere. We found that the centromeres were mainly invaded by ALE and CRM long terminal repeats (LTRs). Moreover, there is a high divergence of centromere length and sequence among B. rapa genomes. We further found that centromeres are enriched for Copia invaded at 0.14 MYA on average, while pericentromeres are enriched for Gypsy LTRs invaded at 0.51 MYA on average. These results indicated the different invasion mechanisms of LTRs between the two structures. In addition, a novel repetitive sequence PCR630 was identified in the pericentromeres of B. rapa. Overall, the near-complete genome assembly, B. rapa Chiifu v4.0, offers valuable tools for genomic and genetic studies of Brassica species and provides new insights into the evolution of centromeres.


Asunto(s)
Brassica rapa , Brassica , Brassica rapa/genética , Genoma de Planta/genética , Brassica/genética , Genómica , Centrómero/genética
18.
Hortic Res ; 9: uhac182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338847

RESUMEN

The Brassicaceae family includes many economically important crop species, as well as cosmopolitan agricultural weed species. In addition, Arabidopsis thaliana, a member of this family, is used as a molecular model plant species. The genus Brassica is mesopolyploid, and the genus comprises comparatively recently originated tetrapolyploid species. With these characteristics, Brassicas have achieved the commonly accepted status of model organisms for genomic studies. This paper reviews the rapid research progress in the Brassicaceae family from diverse omics studies, including genomics, transcriptomics, epigenomics, and three-dimensional (3D) genomics, with a focus on cultivated crops. The morphological plasticity of Brassicaceae crops is largely due to their highly variable genomes. The origin of several important Brassicaceae crops has been established. Genes or loci domesticated or contributing to important traits are summarized. Epigenetic alterations and 3D structures have been found to play roles in subgenome dominance, either in tetraploid Brassica species or their diploid ancestors. Based on this progress, we propose future directions and prospects for the genomic investigation of Brassicaceae crops.

20.
Front Plant Sci ; 13: 841618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371168

RESUMEN

The species Brassica rapa includes several important vegetable crops. The draft reference genome of B. rapa ssp. pekinensis was completed in 2011, and it has since been updated twice. The pangenome with structural variations of 18 B. rapa accessions was published in 2021. Although extensive genomic analysis has been conducted on B. rapa, a comprehensive genome annotation including gene structure, alternative splicing (AS) events, and non-coding genes is still lacking. Therefore, we used the Pacific Biosciences (PacBio) single-molecular long-read technology to improve gene models and produced the annotated genome version 3.5. In total, we obtained 753,041 full-length non-chimeric (FLNC) reads and collapsed these into 92,810 non-redundant consensus isoforms, capturing 48% of the genes annotated in the B. rapa reference genome annotation v3.1. Based on the isoform data, we identified 830 novel protein-coding genes that were missed in previous genome annotations, defined the untranslated regions (UTRs) of 20,340 annotated genes and corrected 886 wrongly spliced genes. We also identified 28,564 AS events and 1,480 long non-coding RNAs (lncRNAs). We produced a relatively complete and high-quality reference transcriptome for B. rapa that can facilitate further functional genomic research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA