Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomed Pharmacother ; 165: 115113, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37418974

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with limited treatment options. Moreover, its prevalence is doubled in type 2 diabetes mellitus (T2DM). Kaempferol (KAP) is a flavonoid compound that has been suggested to have beneficial effects on NAFLD, but studies on the mechanism are lacking, especially in the diabetic state. Herein, we investigated the effect of KAP on NAFLD associated with T2DM and its underlying mechanism in vitro and in vivo. The results of in vitro studies indicated that KAP treatment (10-8-10-6 M) significantly reduced lipid accumulation in oleic acid-induced HepG2 cells. Moreover, in the T2DM animal model of db/db mice, we confirmed that KAP (50 mg/kg) significantly reduced lipid accumulation and improved liver injury. Mechanistic studies in vitro and in vivo showed that Sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) signal was involved in KAP regulation of hepatic lipid accumulation. KAP treatment activated Sirt1 and AMPK, upregulated the levels of fatty acid oxidation-related protein proliferator activated receptor gamma coactivator 1α (PGC1α); and downregulated lipid synthesis-related proteins, including acetyl-coA carboxylase (ACC), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBP1). Furthermore, the curative effect of KAP on lipid accumulation was abolished by siRNA-mediated knockdown of either Sirt1 or AMPK. Collectively, these findings suggest that KAP may be a potential therapeutic agent for NAFLD associated with T2DM by regulating hepatic lipid accumulation through activation of Sirt1/AMPK signaling.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Quempferoles/farmacología , Quempferoles/uso terapéutico , Hígado , Transducción de Señal , Metabolismo de los Lípidos , Células Hep G2 , Lípidos/farmacología , Ratones Endogámicos C57BL
2.
Pharmaceutics ; 15(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37111681

RESUMEN

This study aimed to develop an effective treatment for diabetes and diabetic complications, based on the advantage complementary strategy of drug-drug salt, by designing and synthesizing the multicomponent molecular salts containing metformin (MET) and rhein (RHE). Finally, the salts of MET-RHE (1:1), MET-RHE-H2O (1:1:1), MET-RHE-ethanol-H2O (1:1:1:1), and MET-RHE-acetonitrile (2:2:1) were obtained, indicating the polymorphism of salts formed by MET and RHE. The structures were analyzed by the combination of characterization experiments and theoretical calculation, and the formation mechanism of polymorphism was discussed. The obtained results of in vitro evaluation showed that MET-RHE had a similar hygroscopicity with metformin hydrochloride (MET·HCl), and the solubility of the component of RHE increased by approximately 93 times, which laid a foundation for improving the bioavailability of MET and RHE in vivo. The evaluation of hypoglycemic activity in mice (C57BL/6N) indicated that MET-RHE exhibited better hypoglycemic activity than the parent drugs and the physical mixtures of MET and RHE. The above findings demonstrate that this study achieved the complementary advantages of MET and RHE through the multicomponent pharmaceutical salification technique, and provides new possibilities for the treatment of diabetic complications.

3.
Mol Biol Rep ; 50(3): 1981-1991, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36536184

RESUMEN

BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ratones , Femenino , Masculino , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Estreptozocina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Caracteres Sexuales , Ratones Endogámicos C57BL , Piel/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo
4.
Molecules ; 27(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557826

RESUMEN

The urotensin receptor (UT receptor), a G-protein-coupled receptor mediating urotensin-II and urotensin-II-related peptide signaling in the urotensinergic system, has multiple pharmacological activities. However, there is no drug targeting the UT receptor currently in clinical use, and the discovery of new leads is still important. The complete crystal structure of the UT receptor has not yet been resolved and a screening strategy combining multiple methods can improve the accuracy and efficiency of drug screening. This study aimed to identify novel UT receptor agonists using a combination of docking-based, pharmacophore-based, and cell-based drug screening. First, the three-dimensional structures of the UT receptor were constructed through single-template, multi-template homologous modeling and threading strategies. After structure evaluation and ligand enrichment analysis, a model from the threading modeling was selected for docking-based virtual screening based on stepwise filtering, and 1368 positive compounds were obtained from our compound library. Second, the pharmacophore models were constructed using known ligands targeting the UT receptor for pharmacophore-based virtual screening. A model was selected after model validation, and 300 positive compounds were retrieved. Then, after intersecting the results of two different virtual screening methods with 570 compound entities from our primary screening, 14 compounds were obtained. Finally, three hits were obtained after in vitro confirmation. Furthermore, preliminary evaluation of the hits showed that they influenced glucose consumption. In summary, by integrating docking-based, pharmacophore-based, and in vitro drug screening, three new agonists targeting the UT receptor were identified which may serve as promising therapeutic agents for urotensinergic system disorders.


Asunto(s)
Farmacóforo , Urotensinas , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Ligandos , Simulación del Acoplamiento Molecular
5.
Pharmacol Res ; 185: 106468, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36167277

RESUMEN

Urotensin receptor (UT) is a G-protein-coupled receptor, whose endogenous ligand is urotensin-II (U-II). Skeletal muscle mass is regulated by various conditions, such as nutritional status, exercise, and diseases. Previous studies have pointed out that the urotensinergic system is involved in skeletal muscle metabolism and function, but its mechanism remains unclear, especially given the lack of research on the effect and mechanism of fasting. In this study, UT receptor knockout mice were generated to evaluate whether UT has effects on fasting induced skeletal muscle atrophy. Furthermore, the UT antagonist palosuran (3, 10, 30 mg/kg) was intraperitoneally administered daily for 5 days to clarify the therapeutic effect of UT antagonism. Our results found the mice that fasted for 48 h exhibited skeletal muscle atrophy, accompanied by enhanced U-II levels in both skeletal muscles and blood. UT receptor knockout effectively prevented fasting-induced skeletal muscle atrophy. The UT antagonist ameliorated fasting-induced muscle atrophy in mice as determined by increased muscle strengths, weights, and muscle fiber areas (including fast, slow, and mixed types). In addition, the UT antagonist reduced skeletal muscle atrophic markers, including F-box only protein 32 (FBXO32) and tripartite motif containing 63 (TRIM63). Moreover, the UT antagonist was also observed to enhance PI3K/AKT/mTOR while inhibiting autophagy signaling. In summary, our study provides the first evidence that UT antagonism may represent a novel therapeutic approach for the treatment of fasting-induced skeletal muscle atrophy.


Asunto(s)
Músculo Esquelético , Atrofia Muscular , Receptores Acoplados a Proteínas G , Urotensinas , Animales , Ratones , Ayuno , Ratones Noqueados , Músculo Esquelético/patología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo
7.
Pharmacol Res ; 172: 105807, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34389456

RESUMEN

Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular , Animales , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA