Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neurosci Bull ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060137

RESUMEN

Intellectual disability (ID) is a condition characterized by cognitive impairment and difficulties in adaptive functioning. In our research, we identified two de novo mutations (c.955C>T and c.732C>A) at the KDM2A locus in individuals with varying degrees of ID. In addition, by using the Gene4Denovo database, we discovered five additional cases of de novo mutations in KDM2A. The mutations we identified significantly decreased the expression of the KDM2A protein. To investigate the role of KDM2A in neural development, we used both 2D neural stem cell models and 3D cerebral organoids. Our findings demonstrated that the reduced expression of KDM2A impairs the proliferation of neural progenitor cells (NPCs), increases apoptosis, induces premature neuronal differentiation, and affects synapse maturation. Through ChIP-Seq analysis, we found that KDM2A exhibited binding to the transcription start site regions of genes involved in neurogenesis. In addition, the knockdown of KDM2A hindered H3K36me2 binding to the downstream regulatory elements of genes. By integrating ChIP-Seq and RNA-Seq data, we made a significant discovery of the core genes' remarkable enrichment in the MAPK signaling pathway. Importantly, this enrichment was specifically linked to the p38 MAPK pathway. Furthermore, disease enrichment analysis linked the differentially-expressed genes identified from RNA-Seq of NPCs and cerebral organoids to neurodevelopmental disorders such as ID, autism spectrum disorder, and schizophrenia. Overall, our findings suggest that KDM2A plays a crucial role in regulating the H3K36me2 modification of downstream genes, thereby modulating the MAPK signaling pathway and potentially impacting early brain development.

2.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873195

RESUMEN

Background: The impact of genetic variants on gene expression has been intensely studied at the transcription level, yielding in valuable insights into the association between genes and the risk of complex disorders, such as schizophrenia (SCZ). However, the downstream impact of these variants and the molecular mechanisms connecting transcription variation to disease risk are not well understood. Results: We quantitated ribosome occupancy in prefrontal cortex samples of the BrainGVEX cohort. Together with transcriptomics and proteomics data from the same cohort, we performed cis-Quantitative Trait Locus (QTL) mapping and identified 3,253 expression QTLs (eQTLs), 1,344 ribosome occupancy QTLs (rQTLs), and 657 protein QTLs (pQTLs) out of 7,458 genes quantitated in all three omics types from 185 samples. Of the eQTLs identified, only 34% have their effects propagated to the protein level. Further analysis on the effect size of prefrontal cortex eQTLs identified from an independent dataset showed clear post-transcriptional attenuation of eQTL effects. To investigate the biological relevance of the attenuated eQTLs, we identified 70 expression-specific QTLs (esQTLs), 51 ribosome-occupancy-specific QTLs (rsQTLs), and 107 protein-specific QTLs (psQTLs). Five of these omics-specific QTLs showed strong colocalization with SCZ GWAS signals, three of them are esQTLs. The limited number of GWAS colocalization discoveries from omics-specific QTLs and the apparent prevalence of eQTL attenuation prompted us to take a complementary approach to investigate the functional relevance of attenuated eQTLs. Using S-PrediXcan we identified 74 SCZ risk genes, 34% of which were novel, and 67% of these risk genes were replicated in a MR-Egger test. Notably, 52 out of 74 risk genes were identified using eQTL data and 70% of these SCZ-risk-gene-driving eQTLs show little to no evidence of driving corresponding variations at the protein level. Conclusion: The effect of eQTLs on gene expression in the prefrontal cortex is commonly attenuated post-transcriptionally. Many of the attenuated eQTLs still correlate with SCZ GWAS signal. Further investigation is needed to elucidate a mechanistic link between attenuated eQTLs and SCZ disease risk.

3.
Mol Psychiatry ; 28(2): 710-721, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36424395

RESUMEN

Neuroinflammation has been implicated in multiple brain disorders but the extent and the magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not been directly compared. In this study, 1275 IRGs were curated and their expression changes investigated in 2467 postmortem brains of controls and patients with six major brain disorders, including schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD). There were 865 IRGs present across all microarray and RNA-seq datasets. More than 60% of the IRGs had significantly altered expression in at least one of the six disorders. The differentially expressed immune-related genes (dIRGs) shared across disorders were mainly related to innate immunity. Moreover, sex, tissue, and putative cell type were systematically evaluated for immune alterations in different neuropsychiatric disorders. Co-expression networks revealed that transcripts of the neuroimmune systems interacted with neuronal-systems, both of which contribute to the pathology of brain disorders. However, only a few genes with expression changes were also identified as containing risk variants in genome-wide association studies. The transcriptome alterations at gene and network levels may clarify the immune-related pathophysiology and help to better define neuropsychiatric and neurological disorders.


Asunto(s)
Enfermedad de Alzheimer , Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Humanos , Transcriptoma/genética , Trastorno Depresivo Mayor/metabolismo , Trastorno del Espectro Autista/genética , Estudio de Asociación del Genoma Completo , Encéfalo/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo
4.
Environ Mol Mutagen ; 60(3): 243-253, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30499614

RESUMEN

Fluorene-9-bisphenol (BHPF), a substitute of bisphenol A (BPA) used in the production of the so-called "BPA-free" plastics, has now been shown to be released from commercial plastic bottles into drinking water and has strong anti-estrogenic activity in mice, which suggests that BHPF is also an environmental toxin. However, whether BHPF exposure has effects on mouse oocyte development is unknown. In this study, the influence of acute exposure to BHPF (50-150 µM, 12 hr) on mouse oocyte maturation and its possible mechanisms were investigated. Of note, 50-µM BHPF had no effects on the maturation of mouse oocytes, whereas 100- and 150-µM BHPF significantly blocked germinal vesicle breakdown and led to the failure of first polar body extrusion. Particularly, 100-µM BHPF exposure severely decreased the cellular adenosine triphosphate in a time-dependent manner, which finally brought out the loss of spindles. In addition, the actin cytoskeleton was also impaired. The defective mitochondrial dynamics and decreased mitochondrial DNA implied the damage of mitochondria in BHPF-treated oocytes. Increased PINK1, Beclin1, and LC3B protein level and decreased TOMM20 and TOMM17A protein level illustrated that mitophagy was induced, which also confirmed that BHPF exposure impaired the cellular mitochondria. Moreover, BHPF induced reactive oxygen species accumulation and early apoptosis. Oocyte quality was also impaired by BHPF exposure through altering histone modifications evidenced by increased H3K9me3 and H3K27me3 levels. Collectively, our results indicated that BHPF exposure disrupted mouse oocyte maturation and reduced oocyte quality through affecting cytoskeleton architecture, mitochondrial function, oxidative stress, apoptosis, and histone modifications. Environ. Mol. Mutagen. 60:243-253, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Diferenciación Celular/efectos de los fármacos , Fluorenos/toxicidad , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Fenoles/toxicidad , Citoesqueleto de Actina/patología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Beclina-1/metabolismo , ADN Mitocondrial/análisis , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oocitos/citología , Estrés Oxidativo/efectos de los fármacos , Plásticos/análisis , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA