RESUMEN
Novel C18-functionalized magnetic nanomaterials; i.e., C18@poly-styrene-divinylbenzene-glycidyl methacrylate-Fe3O4 (C18@PS-DVB-GMA-Fe3O4) have been synthesized by using N, N-dimethyloctadecylamine as modifying agent, which could be beneficial to remove the blood phospholipids. The C18@PS-DVB-GMA-Fe3O4 nanoparticles have been used and evaluated in the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) procedure for human plasma prior to the analysis of propofol by supercritical fluid chromatography (SFC). In the QuEChERS procedure, human plasma samples are directly mixed with extraction solvent and C18@PS-DVB-GMA-Fe3O4 nanoparticles, and the extraction and cleanup procedures have been accomplished simultaneously. The SFC separation was performed with a C18 column (Thermo Scientific™ Acclaim™ 120, 250 × 4. 6 mm, 5 µm) within 5 min, using thymol as the internal standard. Supercritical carbon dioxide was used as the mobile phase with methanol as the cosolvent at the flow rate of 1.0 mL/min. The column temperature was 38°C, and detection wavelength was 275 nm. A good linearity was obtained among the propofol concentration range of 0.5-10 mg/L (R2 = 0.9997) with the limit of detection of 0.17 mg/L. Recoveries were in the range of 76.5-91.9%, with RSD less than 7.9%. These results suggested that method is convenient, rapid with high accuracy and little matrix effect, and suitable for rapid determination of propofol plasma concentration.
RESUMEN
[This corrects the article DOI: 10.3389/fmicb.2024.1346251.].
RESUMEN
Background: Vibrio vulnificus (V. vulnificus) is a deadly opportunistic human pathogen with high mortality worldwide. Notably, climate warming is likely to expand its geographical range and increase the infection risk for individuals in coastal regions. However, due to the absence of comprehensive surveillance systems, the emergence and characteristics of clinical V. vulnificus isolates remain poorly understood in China. Methods: In this study, we investigate antibiotic resistance, virulence including serum resistance, and hemolytic ability, as well as molecular characteristics of 21 V. vulnificus isolates collected from patients in Ningbo, China. Results and discussion: The results indicate that all isolates have been identified as potential virulent vcg C type, with the majority (16 of 21) classified as 16S rRNA B type. Furthermore, these isolates exhibit a high level of antibiotic resistance, with 66.7% resistance to more than three antibiotics and 61.9% possessing a multiple antibiotic resistance (MAR) index exceeding 0.2. In terms of virulence, most isolates were categorized as grade 1 in serum resistance, with one strain, S12, demonstrating intermediate sensitivity in serum resistance, belonging to grade 3. Whole genome analysis disclosed the profiles of antibiotic resistance genes (ARGs) and virulence factors (VFs) in these strains. The strains share substantial VF genes associated with adherence, iron uptake, antiphagocytosis, toxin, and motility. In particular, key VFs such as capsule (CPS), lipopolysaccharide (LPS), and multifunctional autoprocessing repeats-in-toxin (MARTX) are prevalent in all isolates. Specifically, S12 possesses a notably high number of VF genes (672), which potentially explains its higher virulence. Additionally, these strains shared six ARGs, namely, PBP3, adeF, varG, parE, and CRP, which likely determine their antibiotic resistance phenotype. Conclusion: Overall, our study provides valuable baseline information for clinical tracking, prevention, control, and treatment of V. vulnificus infections.
RESUMEN
Vibrio parahaemolyticus is a food-borne pathogen, which is often isolated from various seafood products. In this study, two kinds of bacteriophages was isolated from the offshore sediments samples. The anti-phage mutant strain were obtained after seventeen rounds of co-culture of Vibrio parahaemolyticus and mixed bacteriophage, multigroup sequencing was carried out on spontaneous the anti-phage mutant strain and the wild-type strain. We used the Sanger sequencing to verify the accuracy of the mutation sites. Biolog GEN III MicroPlates were used to evaluate the metabolic capacity of wild-type strains and the anti-phage mutant strain. In this study, we found that with flaG gene (slight homology to N terminus of multiple flagellins) mutated, making the bacteriophage unable to absorb to the cell surface of the host. And, the growth competitiveness of the anti-phage mutant strain is lower than the wild-type strain. These results indicated that the fitness cost, including loss of the growth competitiveness, constitutes a barrier to the prevalence of these defense mechanisms. And the selection pressure on different anti-phage strategies depends on the trade-off between mortality imposed by bacteriophages and fitness cost of the defense strategy under the given environmental conditions. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in Vibrio parahaemolyticus. Our study provided knowledge for the evolutionary adaption of bacteria against the bacteriophage, which could add more information to understand the phage resistance mechanism before applying in the industry.
RESUMEN
Background: Colorectal cancer (CRC) is a common global malignancy associated with high invasiveness, high metastasis, and poor prognosis. CRC commonly metastasizes to the liver, where the treatment of metastasis is both difficult and an important topic in current CRC management. Methods: Microarrays data of human CRC with liver metastasis (CRCLM) were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database to identify potential key genes. Differentially expressed (DE) genes (DEGs) and DEmiRNAs of primary CRC tumor tissues and metastatic liver tissues were identified. Microenvironment Cell Populations (MCP)-counter was used to estimate the abundance of immune cells in the tumor micro-environment (TME), and weighted gene correlation network analysis (WGCNA) was used to construct the co-expression network analysis. Gene Ontology and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analyses were conducted, and the protein-protein interaction (PPI) network for the DEGs were constructed and gene modules were screened. Results: Thirty-five pairs of matched colorectal primary cancer and liver metastatic gene expression profiles were screened, and 610 DEGs (265 up-regulated and 345 down-regulated) and 284 DEmiRNAs were identified. The DEGs were mainly enriched in the complement and coagulation cascade pathways and renin secretion. Immune infiltrating cells including neutrophils, monocytic lineage, and cancer-associated fibroblasts (CAFs) differed significantly between primary tumor tissues and metastatic liver tissues. WGCN analysis obtained 12 modules and identified 62 genes with significant interactions which were mainly related to complement and coagulation cascade and the focal adhesion pathway. The best subset regression analysis and backward stepwise regression analysis were performed, and eight genes were determined, including F10, FGG, KNG1, MBL2, PROC, SERPINA1, CAV1, and SPP1. Further analysis showed four genes, including FGG, KNG1, CAV1, and SPP1 were significantly associated with CRCLM. Conclusions: Our study implies complement and coagulation cascade and the focal adhesion pathway play a significant role in the development and progression of CRCLM, and FGG, KNG1, CAV1, and SPP1 may be metastatic markers for its early diagnosis.
RESUMEN
Background: Globally, the incidence and mortality of colorectal cancer (CRC) rank amongst the highest of all malignancies. Thus, research aimed at developing new screening strategies and biomarkers for the early detection of CRC is needed. At present, conventional screening methods have limitations; therefore, new testing strategies have been considered. Using metabolomics to explore the molecular changes in CRC tissue is a mainstream method for identifying potential biomarkers and key cancer factors. Methods: In the present study, 27 samples from nine CRC patients were used to analyze the metabolite differences between the tumor, paracancerous, and normal tissues. The metabolite differences in the various stages of CRC (stages IIA, IIB, and IIIC) were analyzed as well. Subsequently, principal component analysis (PCA), permutation, and trend analyses were performed. Weighted gene co-expression and metabolite-metabolite interaction networks were also constructed. Results: A total of 5,834 metabolites were identified among the included samples. Permutation analysis showed a clear separation between the different tissues and different stages. Compared with normal tissues, tumor tissues exhibited 11, 233, and 25 up-regulated metabolites as well as one, 77, and zero down-regulated metabolites in stages IIA, IIB, and IIIC, respectively. Moreover, tumor tissues in stage IIB exhibited more differential metabolites (233 up-regulated and 77 down-regulated). Weighted Gene Correlation Network Analysis (WGCNA) clustered the 5,834 metabolites into 15 different modules, of which four modules were significantly correlated with tissue specificity. Notably, glycerophospholipid metabolism, fatty acid metabolism, and other pathways were enriched in these modules. Conclusions: Fatty acids and glycerophospholipids were significantly related to the development of CRC. This result is of great significance for future targeted screening of CRC biomarkers and further clarifying the nutrient metabolism of cancer cells.
RESUMEN
In this work, magnetic tetraethylenepentamine (TEPA)-modified carboxyl-carbon nanotubes were synthesized, characterized, and used as adsorbents to conduct magnetic solid-phase extraction (MSPE) for the preconcentration of seven local anesthetic drugs (procaine, lidocaine, mepivacaine, oxybuprocaine, bupivacaine, tetracaine, and cinchocaine) from human plasma. The separation and determination of analytes were performed on high-performance liquid chromatography with UV detection. Several factors affected the extraction efficiency, such as the amount of adsorbents used, extraction time, sample pH, and optimization of elution conditions. Under optimal conditions, satisfactory linear relationships were obtained in the range of 0.02-5.00 mg/L, with the limits of detection (LOD) ranging from 0.003 mg/L to 0.008 mg/L. The recoveries of analytes for spiked human plasma were in the range of 82.0-108%. Moreover, the precision with intra-day and inter-day RSD values were obtained in the range of 1.5-7.7% and 1.5-8.3%. The results indicated that this method could determine the concentration of seven local anesthetic drugs in human plasma with high precision and repeatability and provide support for the clinical monitoring of the concentration of local anesthetic drugs in human plasma.
Asunto(s)
Anestésicos Locales , Nanotubos de Carbono , Cromatografía Líquida de Alta Presión/métodos , Humanos , Fenómenos Magnéticos , Extracción en Fase Sólida/métodosRESUMEN
BACKGROUND: Selective immunoglobulin A deficiency (SIgAD) is the most common primary antibody deficiency disease and frequently reported in the Western countries. However, large-scale epidemiologic studies on SIgAD in China are still lacking. METHODS: The clinical information of 555 180 subjects (age >4 years) including the outpatient, inpatient, and healthy subjects who had ordered serum immunoglobulin A, G, M in 9 hospitals of Zhejiang Province in China was collected. The SIgAD individuals were defined as IgA level <0.07 g/L with normal levels of serum IgG and IgM, whose age should be over 4 years, and any other secondary diseases causing SIgAD were also excluded. Then, the geographical and prevalence distribution of SIgAD individuals in Zhejiang Province and patients' clinical characteristics at the time of diagnosis were also reviewed. RESULT: Among these 555 180 subjects who had ordered the immunoglobulin evaluation, the prevalence of SIgAD was 109/555180 (0.02%). The ratio of male to female of these SIgAD individuals was 1:1.37, which also included 87 adults (≥18 years) and 22 children (18 > age >4 years). For adults, the common clinical features were infections (43/87, 49.43%), autoimmune disorders (31/87, 35.63%), allergic cases (5/87, 5.75%), and tumor cases (4/87, 4.60%). Additionally, infectious diseases (20/22, 90.91%), autoimmune disorders (4/22, 18.18%), and allergic cases (1/22, 4.55%) were found in 22 children. CONCLUSION: We first describe a large cohort of SIgAD individuals of Zhejiang Province in China. The incidence was 0.020%. The common clinical features were infection, autoimmune disorders, tumor, and allergy, and the infection rate was higher in children than the adults.