Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5518, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684250

RESUMEN

The transcription factor TATA-box binding protein (TBP) modulates gene expression in nuclei. This process requires the involvement of nuclear transport receptors, collectively termed karyopherin-ß (Kap-ß) in yeast, and various regulatory factors. In previous studies we showed that Kap114p, a Kap-ß that mediates nuclear import of yeast TBP (yTBP), modulates yTBP-dependent transcription. However, how Kap114p associates with yTBP to exert its multifaceted functions has remained elusive. Here, we employ single-particle cryo-electron microscopy to determine the structure of Kap114p in complex with the core domain of yTBP (yTBPC). Remarkably, Kap114p wraps around the yTBPC N-terminal lobe, revealing a structure resembling transcriptional regulators in complex with TBP, suggesting convergent evolution of the two protein groups for a common function. We further demonstrate that Kap114p sequesters yTBP away from promoters, preventing a collapse of yTBP dynamics required for yeast responses to environmental stress. Hence, we demonstrate that nuclear transport receptors represent critical elements of the transcriptional regulatory network.


Asunto(s)
Saccharomyces cerevisiae , Factores de Transcripción , Transporte Activo de Núcleo Celular , Proteína de Unión a TATA-Box/genética , Saccharomyces cerevisiae/genética , Microscopía por Crioelectrón , Factores de Transcripción/genética , Receptores Citoplasmáticos y Nucleares/genética , beta Carioferinas/genética
2.
Proc Natl Acad Sci U S A ; 119(44): e2209053119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282919

RESUMEN

The spindle is a dynamic intracellular structure self-organized from microtubules and microtubule-associated proteins. The spindle's bipolar morphology is essential for the faithful segregation of chromosomes during cell division, and it is robustly maintained by multifaceted mechanisms. However, abnormally shaped spindles, such as multipolar spindles, can stochastically arise in a cell population and cause chromosome segregation errors. The physical basis of how microtubules fail in bipolarization and occasionally favor nonbipolar assembly is poorly understood. Here, using live fluorescence imaging and quantitative shape analysis in Xenopus egg extracts, we find that spindles of varied shape morphologies emerge through nonrandom, bistable self-organization paths, one leading to a bipolar and the other leading to a multipolar phenotype. The bistability defines the spindle's unique morphological growth dynamics linked to each shape phenotype and can be promoted by a locally distorted microtubule flow that arises within premature structures. We also find that bipolar and multipolar spindles are stable at the steady-state in bulk but can infrequently switch between the two phenotypes. Our microneedle-based physical manipulation further demonstrates that a transient force perturbation applied near the assembled pole can trigger the phenotypic switching, revealing the mechanical plasticity of the spindle. Together with molecular perturbation of kinesin-5 and augmin, our data propose the physical and molecular bases underlying the emergence of spindle-shape variation, which influences chromosome segregation fidelity during cell division.


Asunto(s)
Cinesinas , Huso Acromático , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Segregación Cromosómica , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis
3.
EMBO Rep ; 21(7): e48324, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32484313

RESUMEN

Nuclear accessibility of transcription factors controls gene expression, co-regulated by Ran-dependent nuclear localization and a competitive regulatory network. Here, we reveal that nuclear import factor-facilitated transcriptional repression attenuates ribosome biogenesis under chronic salt stress. Kap114p, one of the karyopherin-ßs (Kap-ßs) that mediates nuclear import of yeast TATA-binding protein (yTBP), exhibits a yTBP-binding affinity four orders of magnitude greater than its counterparts and suppresses binding of yTBP with DNA. Our crystal structure of Kap114p reveals an extensively negatively charged concave surface, accounting for high-affinity basic-protein binding. KAP114 knockout in yeast leads to a high-salt growth defect, with transcriptomic analyses revealing that Kap114p modulates expression of genes associated with ribosomal biogenesis by suppressing yTBP binding to target promoters, a trans-repression mechanism we attribute to reduced nuclear Ran levels under salinity stress. Our findings reveal that Ran integrates the nuclear transport pathway and transcription regulatory network, allowing yeast to respond to environmental stresses.


Asunto(s)
Carioferinas , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/genética , Núcleo Celular/metabolismo , Expresión Génica , Proteínas Nucleares/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/genética
4.
Nanoscale Res Lett ; 9(1): 569, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25328506

RESUMEN

This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA