Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 31(18): 185601, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31952066

RESUMEN

An aqueous, room temperature, and surfactant-less synthetic route based on galvanic replacement and co-reduction is reported to yield PdAgCu nanoparticles (NPs) with a high density of sharp and branched tips. The PdAgCu NPs are of high-purity, uniform size and more than 90% of them adopt branched tips. Besides, the PdAgCu NPs exhibit hollow interiors, well-alloyed nature, and a tuneable localized surface plasmon resonance peak in the near infrared region. Their morphology and optical property are facilely controlled by adjusting the precursor molar ratio, amounts of AgNP seeds and Cl- ions in the growth solution. The proposed synthetic approach is anticipated to offer an attractive avenue for facile synthesis of other multi-metallic and branched NPs with controlled properties.

2.
Angew Chem Int Ed Engl ; 58(18): 6042-6047, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30860633

RESUMEN

Cobalt spinel oxides are a class of promising transition metal (TM) oxides for catalyzing oxygen evolution reaction (OER). Their catalytic activity depends on the electronic structure. In a spinel oxide lattice, each oxygen anion is shared amongst its four nearest transition metal cations, of which one is located within the tetrahedral interstices and the remaining three cations are in the octahedral interstices. This work uncovered the influence of oxygen anion charge distribution on the electronic structure of the redox-active building block Co-O. The charge of oxygen anion tends to shift toward the octahedral-occupied Co instead of tetrahedral-occupied Co, which hence produces strong orbital interaction between octahedral Co and O. Thus, the OER activity can be promoted by pushing more Co into the octahedral site or shifting the oxygen charge towards the redox-active metal center in CoO6 octahedra.

3.
Nanomicro Lett ; 10(4): 75, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30464940

RESUMEN

The hydrogen evolution reaction (HER) is a half-cell reaction in water electrolysis for producing hydrogen gas. In industrial water electrolysis, the HER is often conducted in alkaline media to achieve higher stability of the electrode materials. However, the kinetics of the HER in alkaline medium is slow relative to that in acid because of the low concentration of protons in the former. Under the latter conditions, the entire HER process will require additional effort to obtain protons by water dissociation near or on the catalyst surface. Heterostructured catalysts, with fascinating synergistic effects derived from their heterogeneous interfaces, can provide multiple functional sites for the overall reaction process. At present, the activity of the most active known heterostructured catalysts surpasses (platinum-based heterostructures) or approaches (noble-metal-free heterostructures) that of the commercial Pt/C catalyst under alkaline conditions, demonstrating an infusive potential to break through the bottlenecks. This review summarizes the most representative and recent heterostructured HER catalysts for alkaline medium. The basics and principles of the HER under alkaline conditions are first introduced, followed by a discussion of the latest advances in heterostructured catalysts with/without noble-metal-based heterostructures. Special focus is placed on approaches for enhancing the reaction rate by accelerating the Volmer step. This review aims to provide an overview of the current developments in alkaline HER catalysts, as well as the design principles for the future development of heterostructured nano- or micro-sized electrocatalysts.

4.
Small ; 14(16): e1703338, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29356378

RESUMEN

Development of efficient, affordable, and sustainable energy storage technologies has become an area of interest due to the worsening environmental issues and rising technological dependence on Li-ion batteries. Na-ion batteries (NIBs) have been receiving intensive research efforts during the last few years. Owing to their potentially low cost and relatively high energy density, NIBs are promising energy storage devices, especially for stationary applications. A fundamental understanding of electrode properties during electrochemical reactions is important for the development of low cost, high-energy density, and long shelf life NIBs. This Review aims to summarize and discuss reaction mechanisms of the major types of NIB electrode materials reported. By appreciating how the material works and the fundamental flaws it possesses, it is hoped that this Review will assist readers in coming up with innovative solutions for designing better materials for NIBs.

5.
Sci Rep ; 6: 19777, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26795067

RESUMEN

Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm(3). The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm(2), and a competitive volumetric capacitance of 25.6 F/cm(3). The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.

6.
Small ; 11(27): 3221-46, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25823964

RESUMEN

Bimetallic nanoparticles are a class of important electrocatalyst. They exhibit a synergistic effect that critically depends on the surface composition, which determines the surface properties and the adsorption/desorption behavior of the reactants and intermediates during catalysis. The surface composition can be varied, as nanoparticles are exposed to certain environments through surface segregation. Thermodynamically, this is caused by a difference in surface energy between the two metals. It may lead to the enrichment of one metal on the surface and the other in the core. The external conditions that influence the surface energy may lead to the variation of the thermodynamic steady state of the particle surface and, thus, offer a chance to vary the surface composition. In this review, the most recent and important progress in surface segregation of bimetallic nanoparticles and its impact in electrocatalysis are introduced. Typical segregation inducements and surface characterization techniques are discussed in detail. It is concluded that surface segregation is a critical issue when designing bimetallic catalysts. It is necessary to explore methods to control it and utilize it as a way towards producing robust, bimetallic electrocatalysts.

7.
Nanoscale ; 6(2): 1049-55, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24292647

RESUMEN

We have demonstrated a one-pot, facile and rapid strategy to synthesize novel PtBi nanoplatelets (NPLs) and PdBi nanowires (NWs) with controlled shape, size, and composition in the presence of oleylamine (OAm) and NH4Br. In contrast to the conventional face centered cubic (fcc) structure of Pt-based NPs, PtBi possesses a chemically ordered intermetallic hexagonal close packed (hcp) structure. Using this uniaxial crystal structural character of PtBi, we succeed in synthesizing two-dimensional (2-D) PtBi NPLs. Significantly, the electrochemical studies indicate that the as-prepared 2-D PtBi NPLs exhibit enhanced electrocatalytic activity toward formic acid and methanol oxidation with larger oxidation current density, higher tolerance to CO poisoning, and more negative onset potential in comparison with the commercial Pt/C catalyst. This is attributed to the addition of second metal Bi. In addition, to the best of our knowledge, this is the first time that synthesis of one-dimensional (1-D) PdBi alloy NWs has been reported. The as-synthesized 1-D PdBi bimetallic NWs may find promising potential applications in various fields, such as fuel cells, electrochemical sensors, and organocatalysis.

8.
Chem Commun (Camb) ; (29): 4378-80, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19597598

RESUMEN

Octahedral Fe(3)O(4) nanoparticles, showing ferrimagnetic behavior, were synthesised by a facile route and due to their monodispersity and anisotropic shape the nanoparticles self-assemble to superlattices with well-defined orientation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA