RESUMEN
JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
RESUMEN
Humans possess a remarkable ability to rapidly access diverse information from others' faces with just a brief glance, which is crucial for intricate social interactions. While previous studies using event-related potentials/fields have explored various face dimensions during this process, the interplay between these dimensions remains unclear. Here, by applying multivariate decoding analysis to neural signals recorded with optically pumped magnetometer magnetoencephalography (OPM-MEG), we systematically investigated the temporal interactions between invariant and variable aspects of face stimuli, including race, gender, age and expression. First, our analysis revealed unique temporal structures for each face dimension with high test-retest reliability. Notably, expression and race exhibited a dominant and stably maintained temporal structure according to temporal generalization analysis. Further exploration into the mutual interactions among face dimensions uncovered age effects on gender and race, as well as expression effects on race, during the early stage (around 200-300 ms post face presentation). Additionally, we observed a relatively late effect of race on gender representation, peaking around 350 ms after stimulus onset. Taken together, our findings provide novel insights into the neural dynamics underlying the multi-dimensional aspects of face perception and illuminate the promising future of utilizing OPM-MEG for exploring higher-level human cognition.Significance statement In everyday social activities, people can quickly interpret a wide range of information from others' faces. Although converging evidence has shed light upon the neural substrates underpinning the perception of invariant and variable aspects of faces, such as race, gender, age and expression, it is still not fully understood how the information of one face dimension alters the perception of another. In this study, we utilized multivariate decoding analysis on neural activity captured through OPM-MEG during face perception. Our approach enabled a comprehensive exploration of the temporal interactions among different face dimensions, providing an improved understanding of the temporally structured neural dynamics that support the multi-dimensional face perception in the human brain.
RESUMEN
OBJECTIVE: To study the relationship between aging related genes (ARGs) and Major Depressive Disorder (MDD). METHODS: The datasets GSE98793, GSE52790 and GSE39653 for MDD were obtained from the GEO database, and ARGs were obtained from the Human Aging Genome Resources database. Differential expression genes (DEGs) screening and GO, KEGG enrichment analysis were performed to uncover the underlying mechanisms. To identify key ARGs associated with MDD (key ARG-DEGs), we employed machine learning methods such as LASSO, SVM, and Random Forest, as well as the plug-ins CytoHubba-MCC and MCODE methods. SsGSEA was used to analyze the immune infiltration of MDD and healthy controls. Furthermore, we created risk prediction nomograms model and ROC curves to assess not only the ability of key ARG-DEGs to diagnose MDD, but also predicted miRNAs and transcription factors (TFs) that might interact. Finally, a two-sample Mendelian randomization (MR) study was performed to confirm the association of identified key ARG-DEGs with depression. RESULTS: DEGs of ARGs between MDD and healthy controls led to the identification of eight ARG-DEGs. GO and KEGG analysis revealed that the pathways associated with these eight ARG-DEGs were primarily concentrated in Foxo pathway, JAK-STAT pathway, Pl3K-AKT pathway, and metabolic diseases. A comprehensive analysis further narrowed down the 8 ARG-DEGs to 4 key ARG-DEGs: MMP9, IL7R, S100B, and EGF. Immune infiltration analysis indicated significant differences in CD8(+) T cells, macrophages, neutrophils, Th2 cells, and TIL cells between MDD and control groups, correlating with these four key ARG-DEGs. Based on these four key ARG-DEGs, a risk prediction model for MDD was developed. The miRNA-TF-mRNA interaction network of the key ARG-DEGs highlights the complexity of the regulatory process, providing valuable insights for future related research. The MR study suggested a potential causal relationship between MMP9 and the risk of depression. CONCLUSION: The process of aging, immune dysregulation, and MDD are closely interconnected. MMP9, IL7R, S100B, and EGF may be used as novel diagnostic biomarkers and potential therapeutic targets for MDD, especially MMP9.
RESUMEN
BACKGROUND: The dysregulation of fucosyltransferases (FUTs) contributes to alterations in fucosylated epitope expression, which serve as distinctive features of cancer cells. Nonetheless, a comprehensive elucidation of the prognostic biological marker and therapeutic target of the FUTs family in pan-cancer remains elusive. METHODS: Over 10,000 individuals' profiling information was examined, including information on 750 small molecule drugs, 33 types of cancer, and 24 types of immune cells. We focused on POFUT2's function and applied GSVA (Gene Set Variation Analysis) to calculate the FUT score. Survival and cancer pathways were found to be correlated with this score. After deriving a signature via univariate Cox and LASSO regression, we generated and analyzed the ROC curve and developed a nomogram. RESULTS: Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic changes in FUTs, particularly POFUT2, resulting in aberrant expression. Elevated frequencies of CNV (Copy number variation), SNV (Single Nucleotide Variant), and hypermethylation were observed in FUTs. Additionally, the survival of patients with various types of cancers may be predicted by FUT expression. Immune response and prognosis in numerous types of cancer were found to be strongly linked to aberrant POFUT2 expression. Pathway analysis unveiled the role of FUTs in apoptosis, epithelial-to-mesenchymal transition (EMT), cell cycle, DNA damage response, RAS/MAPK, TSC/mTOR, PI3K/AKT, AR, ER, and RTK. A prognostic index for patients diagnosed with adrenocortical carcinoma (ACC) was established by applying a risk model incorporating nine FUTs and based on the findings of the GSVA. CONCLUSIONS: FUTs, particularly POFUT2, emerge as candidate targets for improving the outcomes of immune therapy. The significance of aberrant MUC12 expression, cancer immune therapy, and patient survival in the context of diverse malignancies is enhanced by the strong correlation observed among these factors. Our five-gene risk signature provides patients with ACC with an independent prognostic indicator, emphasizing the critical function of these genes in inhibiting the immune system's response in ACC.
RESUMEN
The Thomsen-Friedenreich (TF) antigen has proven to be a promising target for developing novel therapeutic cancer vaccines. Here, a new strategy that TF antigen covalently coupled with KRN7000 and vizantin was developed. The resulting three-component vaccine KRN7000-TF-vizantin simultaneously triggers invariant natural killer T (iNKT) cells and macrophage-inducible C-type lectin (Mincle) signaling pathways, eliciting much stronger TF-specific immune responses than glycoprotein vaccine TF-KLH/alum and the corresponding two-component conjugate vaccines TF-KRN7000 and TF-vizantin. The analysis of IgG isotypes and the secretion of cytokines revealed that KRN7000-TF-vizantin induced Th1/Th2 mixed immune responses, where Th1 was dominant. In vivo experiments demonstrated that KRN7000-TF-vizantin increased the survival rate and survival time of tumor-challenged mice, and surviving mice rejected further tumor attacks without any additional treatment. This work demonstrates that covalently coupled KRN7000 and vizantin could serve as a promising TF-based vaccine carrier for antitumor immune therapy, and KRN7000-TF-vizantin features great potential to be a vaccine candidate.
Asunto(s)
Vacunas contra el Cáncer , Lectinas Tipo C , Células T Asesinas Naturales , Animales , Vacunas contra el Cáncer/inmunología , Ratones , Lectinas Tipo C/metabolismo , Lectinas Tipo C/inmunología , Células T Asesinas Naturales/inmunología , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Antígenos de Carbohidratos Asociados a Tumores/química , Ratones Endogámicos C57BL , Femenino , Proteínas de la Membrana/inmunología , Adyuvantes Inmunológicos/farmacología , Adyuvantes de Vacunas/química , Vacunas Sintéticas/inmunología , Línea Celular TumoralRESUMEN
The current magnetoencephalography (MEG) systems, which rely on cables for control and signal transmission, do not fully realize the potential of wearable optically pumped magnetometers (OPM). This study presents a significant advancement in wireless OPM-MEG by reducing magnetization in the electronics and developing a tailored wireless communication protocol. Our protocol effectively eliminates electromagnetic interference, particularly in the critical frequency bands of MEG signals, and accurately synchronizes the acquisition and stimulation channels with the host computer's clock. We have successfully achieved single-channel wireless OPM-MEG measurement and demonstrated its reliability by replicating three well-established experiments: The alpha rhythm, auditory evoked field, and steady-state visual evoked field in the human brain. Our prototype wireless OPM-MEG system not only streamlines the measurement process but also represents a major step forward in the development of wearable OPM-MEG applications in both neuroscience and clinical research.
Asunto(s)
Magnetoencefalografía , Tecnología Inalámbrica , Magnetoencefalografía/instrumentación , Magnetoencefalografía/métodos , Humanos , Tecnología Inalámbrica/instrumentación , Diseño de Equipo , Magnetometría/instrumentación , Magnetometría/métodos , Encéfalo/fisiología , Dispositivos Electrónicos Vestibles , Adulto , Masculino , Ritmo alfa/fisiologíaRESUMEN
Background: Stem cell-derived extracellular vesicles (SCEVs) have emerged as a potential therapy for hemorrhagic stroke. However, their effects are not fully understood. The aim of this study was to comprehensively evaluate the effects of SCEVs therapy in rodent models of hemorrhagic stroke, including subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Materials and Methods: We conducted a comprehensive search of PubMed, EMBASE, and Web of Science until May 2023 to identify studies investigating the effects of SCEVs therapy in rodent models of ICH. The functional outcomes were assessed using neurobehavioral scores. Standardized mean differences (SMDs) and confidence intervals (CIs) were calculated using a random-effects model. Three authors independently screened the articles based on inclusion and exclusion criteria. All statistical analyses were performed using Revman 5.3 and Stata 17.0. Results: Twelve studies published between 2018 and 2023 met the inclusion criteria. Our results showed that SCEVs therapy improved neurobehavioral scores in the rodent SAH model (SMD = -3.49, 95% CI: -4.23 to -2.75; p < 0.001). Additionally, SCEVs therapy improved the chronic neurobehavioral scores of the rodent ICH model (SMD = 2.38, 95% CI: 0.36-4.40; p=0.02) but did not have a significant impact on neurobehavioral scores in the acute and subacute phases. Significant heterogeneity was observed among the studies, and further stratification and sensitivity analyses failed to identify the source of heterogeneity. Conclusions: Our findings suggest that SCEVs therapy may improve neurofunctional behavior after hemorrhagic stroke and provide important insights into the design of preclinical trials.
RESUMEN
Ischemic stroke (IS) is a debilitating neurological disorder with limited treatment options. Extracellular vesicles (EVs) have emerged as crucial lipid bilayer particles derived from various cell types that facilitate intercellular communication and enable the exchange of proteins, lipids, and genetic material. Microglia are resident brain cells that play a crucial role in brain development, maintenance of neuronal networks, and injury repair. They secrete numerous extracellular vesicles in different states. Recent evidence indicates that microglia-derived extracellular vesicles (M-EVs) actively participate in mediating various biological processes, such as neuroprotection and neurorepair, in stroke, making them an excellent therapeutic approach for treating this condition. This review comprehensively summarizes the latest research on M-EVs in stroke and explores their potential as novel therapeutic targets for this disorder. Additionally, it provides an overview of the effects and functions of M-EVs on stroke recovery to facilitate the development of clinically relevant therapies for IS.
Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Microglía , Humanos , Microglía/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Animales , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologíaRESUMEN
This study describes the design and synthesis of five TF-based cancer vaccine candidates using a lipid A mimetic as the carrier and a built-in adjuvant. All synthesized conjugates elicited robust and consistent TF-specific immune responses in mice without external adjuvants. Immunological studies subsequently conducted in wild-type and TLR4 knockout C57BL/6 mice demonstrated that the activation of TLR4 was the main reason that the synthesized lipid A mimetics increased the TF-specific immune responses. All antisera induced by these conjugates can specifically recognize, bind to, and induce the lysis of TF-positive cancer cells. Moreover, representative conjugates 2 and 3 could effectively reduce the growth of tumors and prolong the survival time of mice in vivo, and the efficacies were better than glycoprotein TF-CRM197 with alum adjuvant. Lipid A mimetics could therefore be a promising platform for the development of new carbohydrate-based vaccine carriers with self-adjuvanting properties for the treatment of cancer.
Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer , Diseño de Fármacos , Lípido A , Ratones Endogámicos C57BL , Animales , Lípido A/análogos & derivados , Lípido A/química , Lípido A/farmacología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Vacunas contra el Cáncer/síntesis química , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/química , Ratones , Ratones Noqueados , Humanos , Femenino , Receptor Toll-Like 4/metabolismo , Línea Celular TumoralRESUMEN
Inflammatory age (iAge) is a vital concept for understanding the intricate interplay between chronic inflammation and aging in the context of cancer. However, the importance of iAge-clock-related genes (iAge-CRGs) across cancers remains unexplored. This study aimed to explore the mechanisms and applications of these genes across diverse cancer types. We analyzed profiling data from over 10,000 individuals, covering 33 cancer types, 750 small molecule drugs, and 24 immune cell types. We focused on DCBLD2's function at the single-cell level and computed an iAge-CRG score using GSVA. This score was correlated with cancer pathways, immune infiltration, and survival. A signature was then derived using univariate Cox and LASSO regression, followed by ROC curve analysis, nomogram construction, decision curve analysis, and immunocytochemistry. Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic alterations in iAge-CRGs, especially DCBLD2, leading to abnormal expression. Aberrant DCBLD2 expression strongly correlated with cancer-associated fibroblast infiltration and prognosis in multiple cancers. Based on GSVA results, we developed a risk model using five iAge-CRGs, which proved to be an independent prognostic index for uveal melanoma (UVM) patients. We also systematically evaluated the correlation between the iAge-related signature risk score and immune cell infiltration. iAge-CRGs, particularly DCBLD2, emerge as potential targets for enhancing immunotherapy outcomes. The strong correlation between abnormal DCBLD2 expression, cancer-associated fibroblast infiltration, and patient survival across various cancers underscores their significance. Our five-gene risk signature offers an independent prognostic tool for UVM patients, highlighting the crucial role of these genes in suppressing the immune response in UVM.Kindly check and confirm whether the corresponding affiliation is correctly identified.I identified the affiliation is correctly.thank you.Per style, a structured abstract is not allowed so we have changed the structured abstract to an unstructured abstract. Please check and confirm.I confirm the abstract is correctly ,thank you.
Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Pronóstico , Neoplasias/genética , Neoplasias/inmunología , Biomarcadores de Tumor/genética , Inflamación/genética , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Envejecimiento/genética , Envejecimiento/inmunología , MultiómicaRESUMEN
BACKGROUND: Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD. METHODS: To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis. The exploration of potential biological mechanisms involved the utilization of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Moreover, a bilateral common carotid artery stenosis (BCAS) mouse model of VaD was established, and the expression of the hub gene, its relationship with cognitive function and its potential pathogenic mechanism were verified by cognitive behavior tests, cerebral blood flow measurement, Western blotting, and immunofluorescence experiments. RESULTS: This study identified 293 DEGs from the brain cortex of VaD patients and healthy controls, among these genes, the Toll-like receptor 2 (TLR2) gene was identified as hub gene, and it was associated with the apoptosis-related pathway PI3K/AKT.The BCAS model demonstrated that the use of TLR2 inhibitors greatly enhanced the cognitive function of the mice (p < 0.05). Additionally, there was a notable decrease in the number of apoptotic cells in the brain cortex of the mice (p < 0.01). Moreover, significant alterations in the levels of proteins related to the PI3K/AKT pathway and cleaved-caspase3 proteins were detected (p < 0.05). CONCLUSIONS: TLR2 plays a role in the pathophysiology of VaD by enhancing the neuronal apoptotic pathway, suggesting it could be a promising therapeutic target.
Asunto(s)
Apoptosis , Biología Computacional , Demencia Vascular , Modelos Animales de Enfermedad , Neuronas , Receptor Toll-Like 2 , Demencia Vascular/metabolismo , Demencia Vascular/genética , Demencia Vascular/patología , Animales , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Humanos , Ratones , Masculino , Neuronas/metabolismo , Mapas de Interacción de Proteínas , Ratones Endogámicos C57BL , Redes Reguladoras de Genes , Femenino , Estenosis Carotídea/metabolismo , Estenosis Carotídea/patología , Anciano , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Microglia play a pivotal role in the neuroinflammatory response after brain injury, and their proliferation is dependent on colony-stimulating factors. In the present study, we investigated the effect of inhibiting microglia proliferation on neurological damage post intracerebral hemorrhage (ICH) in a mouse model, an aspect that has never been studied before. Using a colony-stimulating factor-1 receptor antagonist (GW2580), we observed that inhibition of microglia proliferation significantly ameliorated neurobehavioral deficits, attenuated cerebral edema, and reduced hematoma volume after ICH. This intervention was associated with a decrease in pro-inflammatory factors in microglia and an increased infiltration of peripheral regulatory CD8 + CD122+ T cells into the injured brain tissue. The CXCR3/CXCL10 axis is the mechanism of brain homing of regulatory CD8 + CD122+ T cells, and the high expression of IL-10 is the hallmark of their synergistic anti-inflammatory effect with microglia. And activated astrocytes around the insult site are a prominent source of CXCL10. Thus, inhibition of microglial proliferation offers a new perspective for clinical translation. The cross-talk between multiple cells involved in the regulation of the inflammatory response highlights the comprehensive nature of neuroimmunomodulation.
Asunto(s)
Encéfalo , Linfocitos T CD8-positivos , Hemorragia Cerebral , Microglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Masculino , Ratones , Anisoles , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/inmunología , Quimiocina CXCL10/metabolismo , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Subunidad beta del Receptor de Interleucina-2/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Pirimidinas , Receptores CXCR3/metabolismo , Receptores CXCR3/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismoRESUMEN
BACKGROUND: Psychiatric disorders, such as schizophrenia (SCZ), major depressive (MDD), and bipolar disorder (BD) have a profound impact on millions of individuals worldwide. The critical step toward developing effective preventive and treatment strategies lies in comprehending the causal mechanisms behind these diseases and identifying modifiable risk factors associated with them. METHODS: In this study, we conducted a 2-sample Mendelian randomization analysis to explore the potential links between chickenpox(varicella-zoster virus infection) and three major psychiatric disorders(SCZ, MDD, BD). RESULTS: In our MR study, among the three major psychiatric disorders, chickenpox was shown to be causally related to BD, indicating that infection with chickenpox may increase the risk of developing BD (IVW: OR = 1.064, 95% CI =1.025-1.104, P=0.001; RAPS: OR=1.066, 95% CI=1.024-1.110, P=0.002), while there was no causal relationship between SCZ and MDD. Similar estimated causal effects were observed consistently across the various MR models. The robustness of the identified causal relationship between chickenpox and BD holds true regardless of the statistical methods employed, as confirmed by extensive sensitivity analyses that address violations in model assumptions. The MR-Egger regression test failed to reveal any signs of directional pleiotropy (intercept = -0.042, standard error (SE) = 0.029, p = 0.236). Similarly, the MR-PRESSO analysis revealed no evidence of directional pleiotropy or outliers among the chickenpox-related instrumental variables (global test p = 0.653). Furthermore, a leave-one-out sensitivity analysis yielded consistent results, further underscoring the credibility and stability of the causal relationship. CONCLUSIONS: Our findings provide compelling evidence of a causal effect of chickenpox on the risk of BD. To gain a more comprehensive understanding of this association and its underlying mechanisms, additional research is needed. Such investigations are pivotal in identifying effective interventions for promoting BD prevention.
Asunto(s)
Varicela , Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Herpesvirus Humano 3/genética , Varicela/epidemiología , Trastorno Depresivo Mayor/genética , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma CompletoRESUMEN
Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.
Asunto(s)
Anestésicos , Solanaceae , Tropanos/análisis , Tropanos/metabolismo , Solanaceae/genética , Solanaceae/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Anestésicos/metabolismo , ChinaRESUMEN
PURPOSE: The aged microenvironment plays a crucial role in tumor onset and progression. However, it remains unclear whether and how the aging of the extracellular matrix (ECM) influences cancer onset and progression. Furthermore, the mechanisms and implications of extracellular matrix senescence-related genes (ECM-SRGs) in pan-cancer have not been investigated. METHODS: We collected profiling data from over 10,000 individuals, covering 33 cancer types, 750 small molecule drugs, and 24 immune cell types, for a thorough and systematic analysis of ECM-SRGs in cancer. RESULTS: We observed a significant correlation between immune cell infiltrates and Gene Set Variation Analysis enrichment scores of ECM-SRGs in 33 cancer types. Moreover, our results revealed significant differences in immune cell infiltration among patients with copy number variations (CNV) and single nucleotide variations (SNV) in ECM-SRGs across various malignancies. Aberrant hypomethylation led to increased ECM-SRGs expression, and in specific malignancies, a connection between ECM-SRGs hypomethylation and adverse patient survival was established. The frequency of CNV and SNV in ECM-SRGs was elevated. We observed a positive correlation between CNV, SNV, and ECM-SRGs expression. Furthermore, a correlation was found between the high frequency of CNV and SNV in ECM-SRGs and poor patient survival in several cancer types. Additionally, the results demonstrated that ECM-SRGs expression could serve as a predictor of patient survival in diverse cancers. Pathway analysis unveiled the role of ECM-SRGs in activating EMT, apoptosis, and the RAS/MAPK signaling pathway while suppressing the cell cycle, hormone AR, and the response to DNA damage signaling pathway. Finally, we conducted searches in the "Genomics of Drug Sensitivity in Cancer" and "Genomics of Therapeutics Response Portal" databases, identifying several drugs that target ECM-SRGs. CONCLUSIONS: We conducted a comprehensive evaluation of the genomes and immunogenomics of ECM-SRGs, along with their clinical features in 33 solid tumors. This may provide insights into the relationship between ECM-SRGs and tumorigenesis. Consequently, targeting these ECM-SRGs holds promise as a clinical approach for cancer treatment.
RESUMEN
Objective.Magnetoencephalography (MEG) is a powerful non-invasive diagnostic modality for presurgical epilepsy evaluation. However, the clinical utility of MEG mapping for localising epileptic foci is limited by its low efficiency, high labour requirements, and considerable interoperator variability. To address these obstacles, we proposed a novel artificial intelligence-based automated magnetic source imaging (AMSI) pipeline for automated detection and localisation of epileptic sources from MEG data.Approach.To expedite the analysis of clinical MEG data from patients with epilepsy and reduce human bias, we developed an autolabelling method, a deep-learning model based on convolutional neural networks and a hierarchical clustering method based on a perceptual hash algorithm, to enable the coregistration of MEG and magnetic resonance imaging, the detection and clustering of epileptic activity, and the localisation of epileptic sources in a highly automated manner. We tested the capability of the AMSI pipeline by assessing MEG data from 48 epilepsy patients.Main results.The AMSI pipeline was able to rapidly detect interictal epileptiform discharges with 93.31% ± 3.87% precision based on a 35-patient dataset (with sevenfold patientwise cross-validation) and robustly rendered accurate localisation of epileptic activity with a lobar concordance of 87.18% against interictal and ictal stereo-electroencephalography findings in a 13-patient dataset. We also showed that the AMSI pipeline accomplishes the necessary processes and delivers objective results within a much shorter time frame (â¼12 min) than traditional manual processes (â¼4 h).Significance.The AMSI pipeline promises to facilitate increased utilisation of MEG data in the clinical analysis of patients with epilepsy.
Asunto(s)
Inteligencia Artificial , Epilepsia , Humanos , Magnetoencefalografía , Algoritmos , Redes Neurales de la Computación , Epilepsia/diagnósticoRESUMEN
Disulfidptosis, a novel form of regulated cell death (RCD) associated with metabolism, represents a promising intervention target in cancer therapy. While abnormal lncRNA expression is associated with colon cancer development, the prognostic potential and biological characteristics of disulfidptosis-related lncRNAs (DRLs) remain unclear. Consequently, the research aimed to discover a novel indication of DRLs with significant prognostic implications, and to investigate their possible molecular role in the advancement of colon cancer. Here, we acquired RNA-seq data, pertinent clinical data, and genomic mutations of colon adenocarcinoma (COAD) from the TCGA database, and then DRLs were determined through Pearson correlation analysis. A total of 434 COAD patients were divided in to three subgroups through clustering analysis based on DRLs. By utilizing univariate Cox regression, the least absolute shrinkage and selection operator (LASSO) algorithm, and multivariate Cox regression analysis, we ultimately created a prognostic model consisting of four DRLs (AC007728.3, AP003555.1, ATP2B1.AS1, and NSMCE1.DT), and an external database was used to validate the prognostic features of the risk model. According to the Kaplan-Meier curve analysis, patients in the low-risk group exhibited a considerably superior survival time in comparison to those in the high-risk group. Enrichment analysis revealed a significant association between metabolic processes and the genes that were differentially expressed in the high- and low-risk groups. Additionally, significant differences in the tumor immune microenvironment landscape were observed, specifically pertaining to immune cells, function, and checkpoints. High-risk patients exhibited a low likelihood of immune evasion, as indicated by the Tumor Immune Dysfunction and Exclusion (TIDE) analysis. Patients who exhibit both a high risk and high Tumor Mutational Burden (TMB) experience the least amount of time for survival, whereas those belonging to the low-risk and low-TMB category demonstrate the most favorable prognosis. In addition, the risk groups determined by the 4-DRLs signature displayed distinct drug sensitivities. Finally, we confirmed the levels of expression for four DRLs through rt-qPCR in both tissue samples from colon cancer patients and cell lines. Taken together, the first 4-DRLs-based signature we proposed may serve for a hopeful instrument for forecasting the prognosis, immune landscape, and therapeutic responses in colon cancer patients, thereby facilitating optimal clinical decision-making.
Asunto(s)
Adenocarcinoma , Neoplasias del Colon , ARN Largo no Codificante , Humanos , Neoplasias del Colon/genética , Pronóstico , ARN Largo no Codificante/genética , Algoritmos , Microambiente Tumoral/genética , ATPasas Transportadoras de Calcio de la Membrana PlasmáticaRESUMEN
Many cancer patients suffer permanent hearing loss due to accumulation of ototoxic cisplatin in the inner ear. In this study, two types of 100 nm magnetic micelles were developed to sequester cisplatin from aqueous solutions, with the goal of eliminating cochlear ototoxins via magnetic microsurgery. The micellar surface was quantitatively functionalized with anionic S-rich ligands and the micelle core encapsulated superparamagnetic iron oxide nanoparticles. Exceptionally effective sequestration is demonstrated, with removal of greater than 95 and 50% of solution Pt, by means of centrifugal filtration and magnetic extraction. Attraction between negatively charged micellar surfaces and cationic Pt-species played a critical role and was only partially screened by physiologic salt solution. Importantly, magnetic micelles introduce negligible impact on the integrity of inner ear hair cells, demonstrating excellent biocompatibility. This study showcases successful magnetic sequestration of Pt-based ototoxins using highly applicable nano-micellar materials. More generally, these examples highlight features of the micelle-water interfacial environment that are important in developing nanomaterials for metallo-medicinal applications.