RESUMEN
This study presents a facile one-pot solvothermal synthesis of high-performance green fluorescent carbon dots (G-CDs) using o-phenylenediamine and ethylenediamine as precursors. The G-CDs show excellent optical, temporal, and chemical stability. Notably, they exhibit the highest quantum yield of 24.2% in ethanol and a strong green emission peaking at 546 nm under 440-490 nm excitation. In addition, G-CDs have outstanding salt resistance and multi-solvent compatibility. Due to its bright photoluminescence, G-CDs can be used as a secure ink for anti-counterfeiting. More remarkably, Cd2+ ions can efficiently quench the fluorescence of G-CDs with a detection limit of 0.152 µmol/L, enabling accurate quantification of Cd2+ in water systems. The simple synthesis of high-performance G-CDs expands their applicability in sensing and bioimaging.
RESUMEN
AIMS: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.
Asunto(s)
Aminopiridinas/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Sulfonamidas/farmacología , Aminopiridinas/química , Animales , Células Cultivadas , Inhibidores Enzimáticos/uso terapéutico , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , NADPH Oxidasas/antagonistas & inhibidores , Pancreatitis/tratamiento farmacológico , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sulfonamidas/químicaRESUMEN
Angiotensin-converting enzyme (ACE) enhances the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which contribute to the pathogenesis of hypoxic pulmonary hypertension (HPH). Previous reports have demonstrated that hypoxia upregulates ACE expression, but the underlying mechanism is unknown. Here, we found that ACE is persistently upregulated in PASMCs on the transcriptional level during hypoxia. Hypoxia-inducible factor 1alpha (HIF-1alpha), a key transcription factor activated during hypoxia, was able to upregulate ACE protein expression under normoxia, whereas knockdown of HIF-1alpha expression in PASMCs inhibited hypoxia-induced ACE upregulation. Furthermore, HIF-1alpha can bind and transactivate the ACE promoter directly. Therefore, we report that ACE is a novel target of HIF-1alpha. Recently, a homolog of ACE, ACE2, was reported to counterbalance the function of ACE. In contrast to ACE, we found that ACE2 mRNA and protein levels increased during the early stages of hypoxia and decreased to near-baseline levels at the later stages after HIF-1alpha accumulation. Thus HIF-1alpha inhibited ACE2 expression, and the accumulated ANG II catalyzed by ACE is a key mediator in the downregulation of ACE2 by HIF-1alpha. Moreover, a reduction of ACE2 expression in PASMCs by RNA interference was accompanied by significantly enhanced proliferation and migration during hypoxia. We conclude that ACE is directly regulated by HIF-1alpha, whereas ACE2 is regulated in a bidirectional way during hypoxia and may play a protective role during the development of HPH. In sum, these findings contribute to the understanding of the pathogenesis of HPH.
Asunto(s)
Hipertensión Pulmonar/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Arteria Pulmonar/metabolismo , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Western Blotting , Movimiento Celular , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Humanos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Peptidil-Dipeptidasa A/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción GenéticaRESUMEN
Hypoxia-inducible factor-1 (HIF-1), consisting of oxygen-sensitive HIF-1alpha and constitutively expressed HIF-1beta subunits, is a master transcriptional activator for cellular response to hypoxia. To explore direct HIF-1 targets, here we used differential gel electrophoresis (DIGE) to compare the HIF-1-regulated proteins between leukemic U937T-cell line with and without conditional induction of HIF-1alpha protein by tetracycline-off system. Among the upregulated proteins identified, mRNA levels of annexin A1, macrophage-capping protein (CapG), S100 calcium-binding protein A4 (S100A4), S100A11, acyl-CoA-binding protein and calcyclin-binding protein also increased. The expressions of the annexin A1, CapG and S100A4 genes were significantly induced by hypoxia in five adherent cell lines tested besides U937 cells, while their expressions were blocked by the short hairpin RNA specifically against HIF-1alpha. Further luciferase reporter assay and chromatin immunoprecipitation showed that HIF-1alpha directly bound to three hypoxia-responsive elements located at intron 1 of S100A4 gene and hypoxia-responsive element at -350 to -346 of CapG gene, which are essential for HIF-1-induced expression. Additionally, the role of S100A4 expression in migration and invasion of cancer cells were also confirmed. These findings would provide new sights for understanding the molecular mechanisms underlying HIF-1 action.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteoma/metabolismo , Anexina A1/genética , Anexina A1/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular , Electroforesis en Gel Bidimensional , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteoma/genética , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética , Proteínas S100/metabolismoRESUMEN
We previously reported that NSC606985, a new camptothecin analog, induces apoptosis of acute myeloid leukemic cells, which is triggered by proteolytic activation of protein kinase C delta (PKC delta). Here, we performed quantitative proteomic analysis of NSC606985-treated and untreated leukemic U937 cells with two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry. Thirty-three proteins were found to be deregulated. Then, we focused on N-myc downstream regulated gene 1 (NDRG1) down-regulated during apoptosis induction. The results demonstrated that the down-regulation of NDRG1 protein but not its mRNA was an early event prior to proteolytic activation of PKC delta in U937 cells under treatments of NSC606985 as well as other camptothecin analogs. With the ectopic expression of NDRG1, the proteolytic activation of PKC delta in NSC606985-treated leukemic cells was delayed and the cells were less sensitive to apoptosis. On the contrary, the suppression of NDRG1 expression by specific small interfering RNA significantly enhanced NSC606985-induced activation of PKC delta and apoptosis of U937 cells. In summary, our study suggests that the down-regulation of NDRG1 is involved in proteolytic activation of PKC delta during apoptosis induction, which would shed new light on the understanding the apoptotic process initiated by camptothecin.