Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PLoS One ; 19(6): e0298965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38829854

RESUMEN

Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.


Asunto(s)
Empalme Alternativo , Cromatina , Disautonomía Familiar , Exones , ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Disautonomía Familiar/genética , Disautonomía Familiar/metabolismo , Humanos , Exones/genética , Animales , Cromatina/metabolismo , Cromatina/genética , Ratones , Células HEK293 , Histonas/metabolismo , Ratones Transgénicos , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Cinética , Empalme del ARN , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731868

RESUMEN

Among gynecological cancers, endometrial cancer is the most common in developed countries. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that contain proteins involved in immune response and apoptosis. A deep proteomic approach can help to identify dysregulated extracellular matrix (ECM) proteins in EVs correlated to key pathways for tumor development. In this study, we used a proteomics approach correlating the two acquisitions-data-dependent acquisition (DDA) and data-independent acquisition (DIA)-on EVs from the conditioned medium of four cell lines identifying 428 ECM proteins. After protein quantification and statistical analysis, we found significant changes in the abundance (p < 0.05) of 67 proteins. Our bioinformatic analysis identified 26 pathways associated with the ECM. Western blotting analysis on 13 patients with type 1 and type 2 EC and 13 endometrial samples confirmed an altered abundance of MMP2. Our proteomics analysis identified the dysregulated ECM proteins involved in cancer growth. Our data can open the path to other studies for understanding the interaction among cancer cells and the rearrangement of the ECM.


Asunto(s)
Neoplasias Endometriales , Proteínas de la Matriz Extracelular , Matriz Extracelular , Vesículas Extracelulares , Proteómica , Humanos , Femenino , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Proteómica/métodos , Vesículas Extracelulares/metabolismo , Matriz Extracelular/metabolismo , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/metabolismo , Persona de Mediana Edad , Biología Computacional/métodos , Metaloproteinasa 2 de la Matriz/metabolismo
3.
Ann Hepatol ; 29(4): 101506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38710471

RESUMEN

INTRODUCTION AND OBJECTIVES: Epigenetic changes represent a mechanism connecting external stresses with long-term modifications of gene expression programs. In solid organ transplantation, ischemia-reperfusion injury (IRI) appears to induce epigenomic changes in the graft, although the currently available data are extremely limited. The present study aimed to characterize variations in DNA methylation and their effects on the transcriptome in liver transplantation from brain-dead donors. PATIENTS AND METHODS: 12 liver grafts were evaluated through serial biopsies at different timings in the procurement-transplantation process: T0 (warm procurement, in donor), T1 (bench surgery), and T2 (after reperfusion, in recipient). DNA methylation (DNAm) and transcriptome profiles of biopsies were analyzed using microarrays and RNAseq. RESULTS: Significant variations in DNAm were identified, particularly between T2 and T0. Functional enrichment of the best 1000 ranked differentially methylated promoters demonstrated that 387 hypermethylated and 613 hypomethylated promoters were involved in spliceosomal assembly and response to biotic stimuli, and inflammatory immune responses, respectively. At the transcriptome level, T2 vs. T0 showed an upregulation of 337 and downregulation of 61 genes, collectively involved in TNF-α, NFKB, and interleukin signaling. Cell enrichment analysis individuates macrophages, monocytes, and neutrophils as the most significant tissue-cell type in the response. CONCLUSIONS: In the process of liver graft procurement-transplantation, IRI induces significant epigenetic changes that primarily act on the signaling pathways of inflammatory responses dependent on TNF-α, NFKB, and interleukins. Our DNAm datasets are the early IRI methylome literature and will serve as a launch point for studying the impact of epigenetic modification in IRI.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Trasplante de Hígado , Hígado , Daño por Reperfusión , Trasplante de Hígado/efectos adversos , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Persona de Mediana Edad , Femenino , Perfilación de la Expresión Génica/métodos , Transcriptoma , Adulto , Anciano
4.
Nanotheranostics ; 8(3): 298-311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577321

RESUMEN

Exosomes are nanosized extracellular vesicles secreted by all cell types, including canine adipose-derived stem cells (cADSCs). By mediating intercellular communication, exosomes modulate the biology of adjacent and distant cells by transferring their cargo. In the present work after isolation and characterization of exosomes derived from canine adipose tissue, we treated the same canine donors affected by hepatopathies with the previously isolated exosomes. We hypothesize that cADSC-sourced miRNAs are among the factors responsible for a regenerative and anti-inflammatory effect in the treatment of hepatopathies in dogs, providing the clinical veterinary field with an effective and innovative cell-free therapy. Exosomes were isolated and characterized for size, distribution, surface markers, and for their miRNomic cargo by microRNA sequencing. 295 dogs affected with hepatopathies were treated and followed up for 6 months to keep track of their biochemical marker levels. Results confirmed that exosomes derived from cADSCs exhibited an average diameter of 91 nm, and positivity to 8 known exosome markers. The administration of exosomes to dogs affected by liver-associated inflammatory pathologies resulted in the recovery of the animal alongside the normalization of biochemical parameters of kidney function. In conclusion, cADSCs-derived exosomes are a promising therapeutic tool for treating inflammatory disorders in animal companions.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Perros , Animales , MicroARNs/genética , Exosomas/genética , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Hepatitis Crónica/metabolismo , Células Madre/metabolismo
5.
J Nanobiotechnology ; 22(1): 68, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369472

RESUMEN

BACKGROUND: Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS: The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS: We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.


Asunto(s)
Antioxidantes , Malus , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Calcio/metabolismo , Verduras , Proteómica , Malus/metabolismo , Transducción de Señal
6.
Inflamm Res ; 73(1): 117-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117300

RESUMEN

BACKGROUND: Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE: In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS: To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION: Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.


Asunto(s)
COVID-19 , Trombosis , Humanos , Receptor PAR-2 , SARS-CoV-2 , Células Endoteliales
7.
Viruses ; 15(12)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38140524

RESUMEN

Viruses are the most abundant 'biological entities' in the world's oceans. However, technical and methodological constraints limit our understanding of their diversity, particularly in benthic abyssal ecosystems (>4000 m depth). To verify advantages and limitations of analyzing virome DNA subjected either to random amplification or unamplified, we applied shotgun sequencing-by-synthesis to two sample pairs obtained from benthic abyssal sites located in the North-eastern Atlantic Ocean at ca. 4700 m depth. One amplified DNA sample was also subjected to single-molecule long-read sequencing for comparative purposes. Overall, we identified 24,828 viral Operational Taxonomic Units (vOTUs), belonging to 22 viral families. Viral reads were more abundant in the amplified DNA samples (38.5-49.9%) compared to the unamplified ones (4.4-5.8%), with the latter showing a greater viral diversity and 11-16% of dsDNA viruses almost undetectable in the amplified samples. From a procedural point of view, the viromes obtained by direct sequencing (without amplification step) provided a broader overview of both ss and dsDNA viral diversity. Nevertheless, our results suggest that the contextual use of random amplification of the same sample and long-read technology can improve the assessment of viral assemblages by reducing off-target reads.


Asunto(s)
Ecosistema , Virus , Humanos , Virus/genética , Océanos y Mares , Océano Atlántico , ADN
8.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003247

RESUMEN

Endometrial cancer (EC) is the most frequent gynecologic cancer in postmenopausal women. Pathogenetic mechanisms that are related to the onset and progression of the disease are largely still unknown. A multi-omics strategy can help identify altered pathways that could be targeted for improving therapeutical approaches. In this study we used a multi-omics approach on four EC cell lines for the identification of common dysregulated pathways in type 1 and 2 ECs. We analyzed proteomics and metabolomics of AN3CA, HEC1A, KLE and ISHIKAWA cell lines by mass spectrometry. The bioinformatic analysis identified 22 common pathways that are in common with both types of EC. In addition, we identified five proteins and 13 metabolites common to both types of EC. Western blotting analysis on 10 patients with type 1 and type 2 EC and 10 endometria samples confirmed the altered abundance of NPEPPS. Our multi-omics analysis identified dysregulated proteins and metabolites involved in EC tumor growth. Further studies are needed to understand the role of these molecules in EC. Our data can shed light on common pathways to better understand the mechanisms involved in the development and growth of EC, especially for the development of new therapies.


Asunto(s)
Neoplasias Endometriales , Multiómica , Humanos , Femenino , Neoplasias Endometriales/metabolismo , Metabolómica , Biología Computacional
9.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569364

RESUMEN

Endometrial cancer (EC) is the most common gynecologic malignancy of the endometrium. This study focuses on EC and normal endometrium phosphoproteome to identify differentially phosphorylated proteins involved in tumorigenic signalling pathways which induce cancer growth. We obtained tissue samples from 8 types I EC at tumour stage 1 and 8 normal endometria. We analyzed the phosphoproteome by two-dimensional differential gel electrophoresis (2D-DIGE), combined with immobilized metal affinity chromatography (IMAC) and mass spectrometry for protein and phosphopeptide identification. Quantities of 34 phosphoproteins enriched by the IMAC approach were significantly different in the EC compared to the endometrium. Validation using Western blotting analysis on 13 patients with type I EC at tumour stage 1 and 13 endometria samples confirmed the altered abundance of HBB, CKB, LDHB, and HSPB1. Three EC samples were used for in-depth identification of phosphoproteins by LC-MS/MS analysis. Bioinformatic analysis revealed several tumorigenic signalling pathways. Our study highlights the involvement of the phosphoproteome in EC tumour growth. Further studies are needed to understand the role of phosphorylation in EC. Our data shed light on mechanisms that still need to be ascertained but could open the path to a new class of drugs that could hinder EC growth.


Asunto(s)
Neoplasias Endometriales , Fosfoproteínas , Humanos , Femenino , Fosfoproteínas/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía de Afinidad/métodos , Proteoma
10.
Euro Surveill ; 28(28)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37440346

RESUMEN

An outbreak of Ralstonia mannitolilytica bloodstream infections occurred in four hospitals in north-eastern Italy, involving 20 haemodialysis patients with tunnelled central vascular catheter access. We identified as the outbreak source a batch of urokinase vials imported from India contaminated with R. mannitolilytica. Whole genome sequences of the clinical and urokinase strains were highly related, and only urokinase-treated patients were reported with R. mannitolilytica infections (attack rate = 34%; 95% confidence interval: 22.1-47.4). Discontinuation of the contaminated urokinase terminated the outbreak.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Sepsis , Humanos , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/uso terapéutico , Infecciones por Bacterias Gramnegativas/diagnóstico , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/epidemiología , Sepsis/epidemiología , Diálisis Renal/efectos adversos , Brotes de Enfermedades
11.
Biomed Pharmacother ; 164: 114927, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37257228

RESUMEN

Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon (CRBN), a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. CRBN plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the molecular mechanisms underpinning thalidomide action in pediatric IBD. In this study, ten IBD pediatric patients responsive to thalidomide were prospectively enrolled. RNA-sequencing (RNA-seq) analysis and functional enrichment analysis were carried out on peripheral blood mononuclear cells (PBMC) obtained before and after twelve weeks of treatment with thalidomide. RNA-seq analysis revealed 378 differentially expressed genes before and after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those exposed to MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on candidate altered pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in pediatric patients with IBD, providing novel potential targets associated with drug response.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Talidomida , Humanos , Niño , Talidomida/efectos adversos , Leucocitos Mononucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inducido químicamente , Perfilación de la Expresión Génica
12.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983075

RESUMEN

Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Células Cultivadas , Deferoxamina/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Quelantes del Hierro/farmacología , Vesículas Extracelulares/metabolismo
13.
Bone Res ; 11(1): 16, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918542

RESUMEN

Paget's disease (PDB) is a late-onset bone remodeling disorder with a broad spectrum of symptoms and complications. One of the most aggressive forms is caused by the P937R mutation in the ZNF687 gene. Although the genetic involvement of ZNF687 in PDB has been extensively studied, the molecular mechanisms underlying this association remain unclear. Here, we describe the first Zfp687 knock-in mouse model and demonstrate that the mutation recapitulates the PDB phenotype, resulting in severely altered bone remodeling. Through microcomputed tomography analysis, we observed that 8-month-old mutant mice showed a mainly osteolytic phase, with a significant decrease in the trabecular bone volume affecting the femurs and the vertebrae. Conversely, osteoblast activity was deregulated, producing disorganized bone. Notably, this phenotype became pervasive in 16-month-old mice, where osteoblast function overtook bone resorption, as highlighted by the presence of woven bone in histological analyses, consistent with the PDB phenotype. Furthermore, we detected osteophytes and intervertebral disc degeneration, outlining for the first time the link between osteoarthritis and PDB in a PDB mouse model. RNA sequencing of wild-type and Zfp687 knockout RAW264.7 cells identified a set of genes involved in osteoclastogenesis potentially regulated by Zfp687, e.g., Tspan7, Cpe, Vegfc, and Ggt1, confirming its role in this process. Strikingly, in this mouse model, the mutation was also associated with a high penetrance of hepatocellular carcinomas. Thus, this study established an essential role of Zfp687 in the regulation of bone remodeling, offering the potential to therapeutically treat PDB, and underlines the oncogenic potential of ZNF687.

14.
Animals (Basel) ; 13(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899678

RESUMEN

The aim of this study was to compare the cargos of miRNA in exosomes isolated from the milk of healthy (H) cows, cows at risk of mastitis (ARM), and cows with subclinical mastitis (SCM). Based on the number of somatic cells and the percentage of polymorphonuclear cells, 10 cows were assigned to group H, 11 to group ARM, and 11 to group SCM. After isolating exosomes in milk by isoelectric precipitation and ultracentrifugation, the extracted RNA was sequenced to 50 bp long single reads, and these were mapped against Btau_5.0.1. The resulting 225 miRNAs were uploaded to the miRNet suite, and target genes for Bos taurus were identified based on the miRTarBase and miRanda databases. The list of differentially expressed target genes resulting from the comparisons of the three groups was enriched using the Function Explorer of the Kyoto Encyclopedia of Genes and Genomes. A total of 38, 18, and 12 miRNAs were differentially expressed (DE, p < 0.05) in the comparisons of H vs. ARM, ARM vs. SCM, and H vs. SCM, respectively. Only 1 DE miRNA was shared among the three groups (bta-mir-221), 1 DE miRNA in the H vs. SCM comparison, 9 DE miRNAs in the ARM vs. SCM comparison, and 21 DE miRNAs in the H vs. ARM comparison. A comparison of the enriched pathways of target genes from the H, SCM, and ARM samples showed that 19 pathways were differentially expressed in the three groups, while 56 were expressed in the H vs. SCM comparison and 57 in the H vs. ARM comparison. Analyzing milk exosome miRNA cargos can be considered as a promising approach to study the complex molecular machinery set in motion in response to mastitis in dairy cows.

15.
Vet Res Commun ; 47(1): 247-258, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35665445

RESUMEN

The aim of this study was to investigate the effects on gene expression in canine fibroblasts after incubation with a medium enriched with atopic dermatitis canine serum (CAD) compared with healthy canine serum (CTRL) and fetal bovine serum (FBS). Differential Expression and Pathway analysis (iDEP94) in R package (v0.92) was used to identify differentially expressed genes (DEGs) with a False Discovery Rate of 0.01. DEGs from fibroblasts incubated with CAD serum were significantly upregulated and enriched in the extracellular matrix (ECM) and focal adhesion signalling but downregulated in the oxidative phosphorylation pathway. Genes involved in profibrotic processes, such as TGFB1, INHBA, ERK1/2, and the downward regulated genes (collagens and integrins), were significantly upregulated after fibroblasts were exposed to CAD serum. The observed downregulation of genes involved in oxidative phosphorylation suggests metabolic dysregulation toward a myofibroblast phenotype responsible for fibrosis. No differences were found when comparing CTRL with FBS. The DEGs identified in fibroblasts incubated with CAD serum suggest activation of signalling pathways involved in gradual differentiation through a myofibroblast precursors that represent the onset of fibrosis. Molecular and metabolic knowledge of fibroblast changes can be used to identify biomarkers of the disease and new potential pharmacological targets.


Asunto(s)
Dermatitis Atópica , Enfermedades de los Perros , Perros , Animales , Dermatitis Atópica/veterinaria , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Fosforilación Oxidativa , Fibroblastos , Matriz Extracelular , Fibrosis , Enfermedades de los Perros/patología
16.
Microbiol Resour Announc ; 12(1): e0113222, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36507680

RESUMEN

The whole-genome sequences of 15 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains from nasopharyngeal swab samples collected in the Republic of Moldova in June 2020 to September 2021 were determined. Little variability was observed in the early stages, when mostly clade 19A was circulating, followed by clade 20B. Later, multiple introductions of SARS-CoV-2 lineages B.1.1., B.1.1.7, and B.1.1.525 were detected. The B.1.1.7 lineage became predominant between December 2020 and June 2021, followed by the Delta variant.

17.
bioRxiv ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38168337

RESUMEN

Comparative analysis of recent human genome assemblies highlights profound sequence divergence that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy of relying on human reference genomes to accurately analyze sequencing data derived from experimental cell lines. Here, we generated the complete diploid genome assembly for the human retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, to use as matched reference for multi-omics sequencing data analysis. Our RPE1v1.0 assembly presents completely phased haplotypes and chromosome-level scaffolds that span centromeres with ultra-high base accuracy (>QV60). We mapped the haplotype-specific genomic variation specific to this cell line including t(Xq;10q), a stable 73.18 Mb duplication of chromosome 10 translocated onto the microdeleted chromosome X telomere t(Xq;10q). Polymorphisms between haplotypes of the same genome reveals genetic and epigenetic variation for all chromosomes, especially at centromeres. The RPE-1 assembly as matched reference genome improves mapping quality of multi-omics reads originating from RPE-1 cells with drastic reduction in alignments mismatches compared to using the most complete human reference to date (CHM13). Leveraging the accuracy achieved using a matched reference, we were able to identify the kinetochore sites at base pair resolution and show unprecedented variation between haplotypes. This work showcases the use of matched reference genomes for multiomics analyses and serves as the foundation for a call to comprehensively assemble experimentally relevant cell lines for widespread application.

18.
Cancers (Basel) ; 14(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36551747

RESUMEN

Endometrial cancers (ECs) are mostly adenocarcinomas arising from the inner part of the uterus. The identification of serum biomarkers, either soluble or carried in the exosome, may be useful in making an early diagnosis. We used label-free quantification mass spectrometry (LFQ-MS)-based proteomics to investigate the proteome of exosomes in the albumin-depleted serum from 12 patients with EC, as compared to 12 healthy controls. After quantification and statistical analysis, we found significant changes in the abundance (p < 0.05) of 33 proteins in EC vs. control samples, with a fold change of ≥1.5 or ≤0.6. Validation using Western blotting analysis in 36 patients with EC as compared to 36 healthy individuals confirmed the upregulation of APOA1, HBB, CA1, HBD, LPA, SAA4, PF4V1, and APOE. A multivariate logistic regression model based on the abundance of these proteins was able to separate the controls from the EC patients with excellent sensitivity levels, particularly for stage 1 ECs. The results show that using LFQ-MS to explore the specific proteome of serum exosomes allows for the identification of biomarkers in EC. These observations suggest that PF4V1, CA1, HBD, and APOE represent biomarkers that are able to reach the clinical stage, after a validation phase.

19.
Cells ; 11(24)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36552714

RESUMEN

Skin ageing is strictly related to chronic inflammation of the derma and the decay of structural proteins of the extracellular matrix. Indeed, it has become common practice to refer to this phenomenon as inflammageing. Biotech innovation is always in search of new active principles that induce a youthful appearance. In this paper, apple-derived nanovesicles (ADNVs) were investigated as novel anti-inflammatory compounds, which are able to alter the extracellular matrix production of dermal fibroblasts. Total RNA sequencing analysis revealed that ADNVs negatively influence the activity of Toll-like Receptor 4 (TLR4), and, thus, downregulate the NF-κB pro-inflammatory pathway. ADNVs also reduce extracellular matrix degradation by increasing collagen synthesis (COL3A1, COL1A2, COL8A1 and COL6A1) and downregulating metalloproteinase production (MMP1, MMP8 and MMP9). Topical applications for skin regeneration were evaluated by the association of ADNVs with hyaluronic-acid-based hydrogel and patches.


Asunto(s)
Exosomas , Malus , Colágeno Tipo I/metabolismo , FN-kappa B/metabolismo , Malus/metabolismo , Regulación hacia Abajo , Exosomas/metabolismo , Metaloproteinasas de la Matriz/metabolismo
20.
Front Oncol ; 12: 945060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249044

RESUMEN

Post-coronavirus disease 2019 (post-COVID-19) condition, previously referred to as long COVID, includes a post-acute syndrome defined by the presence of non-specific symptoms occurring usually 3 months from the onset of the acute phase and lasting at least 2 months. Patients with chronic lymphocytic leukemia (CLL) represent a high-risk population for COVID-19. Moreover, the response to SARS-CoV-2 vaccination is often absent or inadequate. The introduction of monoclonal antibodies (mAbs) in the treatment landscape of COVID-19 allowed to reduce hospitalization and mortality in mild-moderate SARS-CoV-2 infection, but limited data are available in hematological patients. We here report the effective use of casirivimab/imdevimab (CI) in the treatment of two CLL patients with persistent infection and post-COVID-19 condition. Full genome sequencing of viral RNA from nasopharyngeal swabs was performed at the time of COVID-19 diagnosis and before the administration of CI. Both patients experienced persistent SARS-CoV-2 infection with no seroconversion for 8 and 7 months, respectively, associated with COVID symptoms. In both cases after the infusion of CI, we observed a rapid negativization of the nasal swabs, the resolution of post-COVID-19 condition, and the development of both the IgG against the trimeric spike protein and the receptor-binding domain (RBD) of the spike protein. The analysis of the viral genome in the period elapsed from the time of COVID-19 diagnosis and the administration of mAbs showed the development of new mutations, especially in the S gene. The genome variations observed during the time suggest a role of persistent SARS-CoV-2 infection as a possible source for the development of viral variants. The effects observed in these two patients appeared strongly related to passive immunity conferred by CI treatment permitting SARS-CoV-2 clearance and resolution of post-COVID-19 condition. On these grounds, passive anti-SARS-CoV-2 antibody treatment may represent as a possible therapeutic option in some patients with persistent SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA