Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Chem ; 15(12): 1693-1704, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932412

RESUMEN

Co-phase separation of RNAs and RNA-binding proteins drives the biogenesis of ribonucleoprotein granules. RNAs can also undergo phase transitions in the absence of proteins. However, the physicochemical driving forces of protein-free, RNA-driven phase transitions remain unclear. Here we report that various types of RNA undergo phase separation with system-specific lower critical solution temperatures. This entropically driven phase separation is an intrinsic feature of the phosphate backbone that requires Mg2+ ions and is modulated by RNA bases. RNA-only condensates can additionally undergo enthalpically favourable percolation transitions within dense phases. This is enabled by a combination of Mg2+-dependent bridging interactions between phosphate groups and RNA-specific base stacking and base pairing. Phase separation coupled to percolation can cause dynamic arrest of RNAs within condensates and suppress the catalytic activity of an RNase P ribozyme. Our work highlights the need to incorporate RNA-driven phase transitions into models for ribonucleoprotein granule biogenesis.


Asunto(s)
ARN Catalítico , ARN , Temperatura , Proteínas de Unión al ARN , Fosfatos , Transición de Fase
2.
J Biol Chem ; 299(9): 105123, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536630

RESUMEN

Distinct functions mediated by members of the monopolar spindle-one-binder (MOB) family of proteins remain elusive beyond the evolutionarily conserved and well-established roles of MOB1 (MOB1A/B) in regulating tissue homeostasis within the Hippo pathway. Since MOB proteins are adaptors, understanding how they engage in protein-protein interactions and help assemble complexes is essential to define the full scope of their biological functions. To address this, we undertook a proximity-dependent biotin identification approach to define the interactomes of all seven human MOB proteins in HeLa and human embryonic kidney 293 cell lines. We uncovered >200 interactions, of which at least 70% are unreported on BioGrid. The generated dataset reliably recalled the bona fide interactors of the well-studied MOBs. We further defined the common and differential interactome between different MOBs on a subfamily and an individual level. We discovered a unique association between MOB3C and 7 of 10 protein subunits of the RNase P complex, an endonuclease that catalyzes tRNA 5' maturation. As a proof of principle for the robustness of the generated dataset, we validated the specific interaction of MOB3C with catalytically active RNase P by using affinity purification-mass spectrometry and pre-tRNA cleavage assays of MOB3C pulldowns. In summary, our data provide novel insights into the biology of MOB proteins and reveal the first interactors of MOB3C, components of the RNase P complex, and hence an exciting nexus with RNA biology.


Asunto(s)
Vía de Señalización Hippo , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Ribonucleasa P , Humanos , Células HeLa , Vía de Señalización Hippo/fisiología , Ribonucleasa P/metabolismo , Células HEK293 , Subunidades de Proteína/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(10): e2119529119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238631

RESUMEN

SignificanceUnderstanding and treating neurological disorders are global priorities. Some of these diseases are engendered by mutations that cause defects in the cellular synthesis of transfer RNAs (tRNAs), which function as adapter molecules that translate messenger RNAs into proteins. During tRNA biogenesis, ribonuclease P catalyzes removal of the transcribed sequence upstream of the mature tRNA. Here, we focus on a cytoplasmic tRNAArgUCU that is expressed specifically in neurons and, when harboring a particular point mutation, contributes to neurodegeneration in mice. Our results suggest that this mutation favors stable alternative structures that are not cleaved by mouse ribonuclease P and motivate a paradigm that may help to understand the molecular basis for disease-associated mutations in other tRNAs.


Asunto(s)
Homeostasis , Neuronas/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia/metabolismo , Animales , Emparejamiento Base , Corteza Cerebral/enzimología , Magnesio/metabolismo , Ratones , Modelos Moleculares , Mutación Puntual , Procesamiento Proteico-Postraduccional , ARN de Transferencia/química , ARN de Transferencia/genética , Ribonucleasa P/aislamiento & purificación , Ribonucleasa P/metabolismo , Especificidad por Sustrato
5.
Games Health J ; 10(5): 355-360, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597179

RESUMEN

Objective: Some countries treat carrying condoms as evidence of prostitution, commonly referred to as "condoms-as-evidence" policy/practice. This policy has deleterious outcomes on the health and safety of sex workers worldwide. This study evaluates the impact of a simulation game that advocates against the policy in an effort to increase advocacy attitudes and intentions against condoms-as-evidence policies and practices. Materials and Methods: A between-subjects randomized experiment (N = 70) was conducted to evaluate the effectiveness of the intervention game relative to a pamphlet. The game, Cops & Rubbers, is a simulation-based tabletop game situating participants in the role of a sex worker trying to balance competing financial, safety, and health-related goals. The research for and development of the pamphlet was funded by Open Society Foundations to highlight the impact of the condoms-as-evidence policy and elicit advocacy efforts. Results: Although the game elicited similar levels of advocacy attitudes toward the pamphlet, it elicited significantly higher advocacy intentions than the pamphlet. Conflicting results were witnessed in psychological reactance. Conclusion: The present results demonstrate the utility of games as an advocacy tool for health and human rights among a polarizing topic such as sex worker advocacy. These results have both practical utility and research implications. From a practical standpoint, we demonstrate that the game can increase advocacy intentions and tangibly contribute to human rights and health issues. Furthermore, these results have the potential to inform novel game design strategies to influence persuasive outcomes in transformational games.


Asunto(s)
Condones , Juegos de Video , Política de Salud , Humanos , Percepción , Políticas
6.
Trends Biochem Sci ; 46(12): 976-991, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34511335

RESUMEN

RNase P is an essential enzyme that catalyzes removal of the 5' leader from precursor transfer RNAs. The ribonucleoprotein (RNP) form of RNase P is present in all domains of life and comprises a single catalytic RNA (ribozyme) and a variable number of protein cofactors. Recent cryo-electron microscopy structures of representative archaeal and eukaryotic (nuclear) RNase P holoenzymes bound to tRNA substrate/product provide high-resolution detail on subunit organization, topology, and substrate recognition in these large, multisubunit catalytic RNPs. These structures point to the challenges in understanding how proteins modulate the RNA functional repertoire and how the structure of an ancient RNA-based catalyst was reshaped during evolution by new macromolecular associations that were likely necessitated by functional/regulatory coupling.


Asunto(s)
ARN Catalítico , Ribonucleasa P , Microscopía por Crioelectrón , Conformación de Ácido Nucleico , ARN , ARN Catalítico/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa P/química , Ribonucleasa P/genética , Ribonucleasa P/metabolismo
7.
Front Bioeng Biotechnol ; 9: 669462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34169065

RESUMEN

Carbon catabolite repression (CCR) limits microbial utilization of lignocellulose-derived pentoses. To relieve CCR in Clostridium beijerinckii NCIMB 8052, we sought to downregulate catabolite control protein A (CcpA) using the M1GS ribozyme technology. A CcpA-specific ribozyme was constructed by tethering the catalytic subunit of Escherichia coli RNase P (M1 RNA) to a guide sequence (GS) targeting CcpA mRNA (M1GSCcpA). As negative controls, the ribozyme M1GSCcpA-Sc (constructed with a scrambled GSCcpA) or the empty plasmid pMTL500E were used. With a ∼3-fold knockdown of CcpA mRNA in C. beijerinckii expressing M1GSCcpA (C. beijerinckii_M1GSCcpA) relative to both controls, a modest enhancement in mixed-sugar utilization and solvent production was achieved. Unexpectedly, C. beijerinckii_M1GSCcpA-Sc produced 50% more solvent than C. beijerinckii_pMTL500E grown on glucose + arabinose. Sequence complementarity (albeit suboptimal) suggested that M1GSCcpA-Sc could target the mRNA encoding DNA integrity scanning protein A (DisA), an expectation that was confirmed by a 53-fold knockdown in DisA mRNA levels. Therefore, M1GSCcpA-Sc was renamed M1GSDisA. Compared to C. beijerinckii_M1GSCcpA and _pMTL500E, C. beijerinckii_M1GSDisA exhibited a 7-fold decrease in the intracellular c-di-AMP level after 24 h of growth and a near-complete loss of viability upon exposure to DNA-damaging antibiotics. Alterations in c-di-AMP-mediated signaling and cell cycling likely culminate in a sporulation delay and the solvent production gains observed in C. beijerinckii_M1GSDisA. Successful knockdown of the CcpA and DisA mRNAs demonstrate the feasibility of using M1GS technology as a metabolic engineering tool for increasing butanol production in C. beijerinckii.

8.
Plant Biotechnol J ; 19(10): 1988-1999, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33932077

RESUMEN

RNase P functions either as a catalytic ribonucleoprotein (RNP) or as an RNA-free polypeptide to catalyse RNA processing, primarily tRNA 5' maturation. To the growing evidence of non-canonical roles for RNase P RNP subunits including regulation of chromatin structure and function, we add here a role for the rice RNase P Rpp30 in innate immunity. This protein (encoded by LOC_Os11g01074) was uncovered as the top hit in yeast two-hybrid assays performed with the rice histone deacetylase HDT701 as bait. We showed that HDT701 and OsRpp30 are localized to the rice nucleus, OsRpp30 expression increased post-infection by Pyricularia oryzae (syn. Magnaporthe oryzae), and OsRpp30 deacetylation coincided with HDT701 overexpression in vivo. Overexpression of OsRpp30 in transgenic rice increased expression of defence genes and generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, outcomes that culminated in resistance to a fungal (P. oryzae) and a bacterial (Xanthomonas oryzae pv. oryzae) pathogen. Knockout of OsRpp30 yielded the opposite phenotypes. Moreover, HA-tagged OsRpp30 co-purified with RNase P pre-tRNA cleavage activity. Interestingly, OsRpp30 is conserved in grass crops, including a near-identical C-terminal tail that is essential for HDT701 binding and defence regulation. Overall, our results suggest that OsRpp30 plays an important role in rice immune response to pathogens and provides a new approach to generate broad-spectrum disease-resistant rice cultivars.


Asunto(s)
Magnaporthe , Oryza , Xanthomonas , Ascomicetos , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades de Proteína , Ribonucleasa P
9.
Water Resour Res ; 57(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746297

RESUMEN

Identifying the spatial distribution and magnitude of seepage flux across the groundwater-surface water (GW-SW) interface is critical for assessing potential impairments and restoration alternatives for water bodies adjacent to sites with groundwater contamination. Measurement of the vertical distribution and time-varying characteristics of temperature in sediments provides an indirect way to map out spatial and temporal patterns of seepage flux into surface water. Two spreadsheet-based calculation tools are introduced that implement four one-dimensional analytical solutions to calculate the magnitude and direction of seepage flux based on measurement of steady-state vertical temperature profiles or transient diel temperature signals at two depths within sediment. Performance of these calculation tools is demonstrated for a pond receiving contaminated groundwater discharge from an adjacent landfill. Transient versus steady-state model performance is compared, and limitations of transient modelsare illustrated for a situation with unfavorable sediment characteristics and inadequate sensor spacing. The availability of a range of analytical solutions implemented within Microsoft Excel® is intended to encourage practitioners to explore use of this seepage flux characterization method and develop greater insight into best practices for model selection and use.

10.
Mol Cell ; 81(4): 870-883.e10, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453165

RESUMEN

The series of RNA folding events that occur during transcription can critically influence cellular RNA function. Here, we present reconstructing RNA dynamics from data (R2D2), a method to uncover details of cotranscriptional RNA folding. We model the folding of the Escherichia coli signal recognition particle (SRP) RNA and show that it requires specific local structural fluctuations within a key hairpin to engender efficient cotranscriptional conformational rearrangement into the functional structure. All-atom molecular dynamics simulations suggest that this rearrangement proceeds through an internal toehold-mediated strand-displacement mechanism, which can be disrupted with a point mutation that limits local structural fluctuations and rescued with compensating mutations that restore these fluctuations. Moreover, a cotranscriptional folding intermediate could be cleaved in vitro by recombinant E. coli RNase P, suggesting potential cotranscriptional processing. These results from experiment-guided multi-scale modeling demonstrate that even an RNA with a simple functional structure can undergo complex folding and processing during synthesis.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Pliegue del ARN , ARN Bacteriano/química , Ribonucleasa P/química , Partícula de Reconocimiento de Señal/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Ribonucleasa P/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
11.
Trends Biochem Sci ; 45(10): 825-828, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32891515

RESUMEN

The high-resolution structures of yeast RNase for mitochondrial RNA processing (MRP), a catalytic ribonucleoprotein (RNP), recently reported by Lan et al. and Perederina et al. illustrate how RNA-mediated selection of alternative protein conformations, sampled during stochastic excursions by polymorphic/metamorphic proteins, enabled RNAs and proteins to mutually influence their functional repertoires and shape RNP evolution.


Asunto(s)
Precursores del ARN , Ribonucleoproteínas , Endorribonucleasas/metabolismo , ARN , Procesamiento Postranscripcional del ARN , ARN Ribosómico , Ribonucleasas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
13.
RNA ; 25(3): 286-291, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578286

RESUMEN

RNase P, an essential housekeeping endonuclease needed for 5'-processing of tRNAs, exists in two distinct forms: one with an RNA- and the other with a protein-based active site. The notion that the protein form of RNase P exists only in eukaryotes has been upended by the recent discovery of a protein-only variant in Bacteria and Archaea. The use of these two divergent scaffolds, shaped by convergent evolution, in all three domains of life inspires questions relating to the ancestral form of RNase P, as well as their origins and function(s) in vivo. Results from our analysis of publicly available bacterial and archaeal genomes suggest that the widespread RNA-based ribonucleoprotein variant is likely the ancient form. We also discuss the possible genetic origins and function of RNase P, including how the simultaneous presence of its variants may contribute to the fitness of their host organisms.


Asunto(s)
Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Evolución Biológica , Activación Enzimática , Transferencia de Gen Horizontal , Ribonucleoproteínas/metabolismo , Especificidad de la Especie
14.
Nucleic Acids Res ; 45(12): 7432-7440, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28525600

RESUMEN

RNase P is primarily responsible for the 5΄ maturation of transfer RNAs (tRNAs) in all domains of life. Archaeal RNase P is a ribonucleoprotein made up of one catalytic RNA and five protein cofactors including L7Ae, which is known to bind the kink-turn (K-turn), an RNA structural element that causes axial bending. However, the number and location of K-turns in archaeal RNase P RNAs (RPRs) are unclear. As part of an integrated approach, we used native mass spectrometry to assess the number of L7Ae copies that bound the RPR and site-specific hydroxyl radical-mediated footprinting to localize the K-turns. Mutagenesis of each of the putative K-turns singly or in combination decreased the number of bound L7Ae copies, and either eliminated or changed the L7Ae footprint on the mutant RPRs. In addition, our results support an unprecedented 'double K-turn' module in type A and type M archaeal RPR variants.


Asunto(s)
Proteínas Arqueales/química , Regulación de la Expresión Génica Arqueal , Methanocaldococcus/enzimología , Pyrococcus furiosus/enzimología , ARN de Archaea/química , ARN de Transferencia/química , Ribonucleasa P/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Methanocaldococcus/genética , Methanococcus/enzimología , Methanococcus/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Pyrococcus furiosus/genética , Precursores del ARN , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/metabolismo
15.
Anesthesiol Clin ; 35(2): 181-190, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28526141

RESUMEN

Appropriate nutrition in the hospital setting, particularly in critically ill patients, has long been tied to improving clinical outcomes. During critical illness, inflammatory mediators and cytokines lead to the creation of a catabolic state to facilitate the use of endogenous energy sources to meet increased energy demands. This process results in increasing the likelihood of overfeeding. The literature has revealed exponential advances in understanding the molecular basis of nutritional support and evolution of clinical protocols aimed at treating artificial nutritional support as a therapeutic intervention, preventing loss of lean body mass and metabolic deterioration to improve clinical outcomes in the critically ill.


Asunto(s)
Enfermedad Crítica , Nutrición Enteral/tendencias , Unidades de Cuidados Intensivos , Nutrición Parenteral/tendencias , Interacciones Farmacológicas , Ingestión de Energía , Nutrición Enteral/efectos adversos , Humanos , Nutrición Parenteral/efectos adversos
16.
PLoS Genet ; 11(1): e1004893, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569672

RESUMEN

Ribonuclease P (RNase P) is an essential enzyme required for 5'-maturation of tRNA. While an RNA-free, protein-based form of RNase P exists in eukaryotes, the ribonucleoprotein (RNP) form is found in all domains of life. The catalytic component of the RNP is an RNA known as RNase P RNA (RPR). Eukaryotic RPR genes are typically transcribed by RNA polymerase III (pol III). Here we showed that the RPR gene in Drosophila, which is annotated in the intron of a pol II-transcribed protein-coding gene, lacks signals for transcription by pol III. Using reporter gene constructs that include the RPR-coding intron from Drosophila, we found that the intron contains all the sequences necessary for production of mature RPR but is dependent on the promoter of the recipient gene for expression. We also demonstrated that the intron-coded RPR copurifies with RNase P and is required for its activity. Analysis of RPR genes in various animal genomes revealed a striking divide in the animal kingdom that separates insects and crustaceans into a single group in which RPR genes lack signals for independent transcription and are embedded in different protein-coding genes. Our findings provide evidence for a genetic event that occurred approximately 500 million years ago in the arthropod lineage, which switched the control of the transcription of RPR from pol III to pol II.


Asunto(s)
Drosophila/genética , Evolución Molecular , ARN Catalítico/genética , Ribonucleasa P/genética , Animales , Crustáceos/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Genómica , Intrones/genética , Regiones Promotoras Genéticas , ARN Polimerasa III/genética , ARN de Transferencia/genética
17.
Nucleic Acids Res ; 42(21): 13328-38, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25361963

RESUMEN

The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg(2+)-dependent 5' maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe-modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae-EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis.


Asunto(s)
Proteínas Arqueales/química , Pyrococcus furiosus , ARN de Archaea/química , Proteínas de Unión al ARN/química , Ribonucleasa P/química , Sustitución de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Pyrococcus furiosus/genética , ARN de Archaea/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa P/metabolismo
18.
Angew Chem Int Ed Engl ; 53(43): 11483-7, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25195671

RESUMEN

We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly.


Asunto(s)
Espectrometría de Masas/métodos , Pyrococcus furiosus/enzimología , Ribonucleasa P/metabolismo , Catálisis , Ribonucleasa P/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-24110104

RESUMEN

Hypoglycemia is dangerous and considered as a limiting factor of the glycemic control therapy for patients with type 1 diabetes mellitus (T1DM). Nocturnal hypoglycemia is especially feared because early warning symptoms are unclear during sleep so an episode of hypoglycemia may lead to a fatal effect on patients. The main objective of this paper is to explore the correlation between hypoglycemia and electroencephalography (EEG) signals. To do this, the EEG of five T1DM adolescents from an overnight insulin-induced study is analyzed by spectral analysis to extract four different parameters. We aim to explore the response of these parameters during the clamp study which includes three main phases of normal, hypoglycemia and recovery. We also look at data at the blood glucose level (BGL) of 3.3-3.9 mmol/l to find a threshold to distinguish between non-hypoglycemia and hypoglycemia states. The results show that extracted EEG parameters are highly correlated with patients' conditions during the study. It is also shown that at the BGL of 3.3 mmol/l, responses to hypoglycemia in EEG signals start to significantly occur.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Electroencefalografía/métodos , Hipoglucemia/diagnóstico , Procesamiento de Señales Asistido por Computador , Adolescente , Niño , Análisis de Fourier , Técnica de Clampeo de la Glucosa , Humanos , Hipoglucemia/sangre , Insulina/sangre , Reproducibilidad de los Resultados , Sueño
20.
Artículo en Inglés | MEDLINE | ID: mdl-24110518

RESUMEN

In this paper, we introduce a shared control mechanism for an intelligent wheelchair designed to support people with mobility impairments, who also have visual, upper limb, or cognitive impairment. The method is designed to allow users to be involved in the movement as much as possible, while still providing the assistance needed to achieve the goal safely. The data collected through URG-04LX and user interface are analyzed to determine whether the desired action is safe to perform. The system then decides to provide assistance or to allow the user input to control the wheelchair. The experiment results indicate that the method performs effectively with high satisfaction.


Asunto(s)
Robótica/instrumentación , Interfaz Usuario-Computador , Silla de Ruedas , Diseño de Equipo , Humanos , Riesgo , Seguridad , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA