Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Water Res ; 102: 629-639, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27479295

RESUMEN

To develop a cost-effective method for post-formation mitigation of iodinated disinfection by-products, degradation of iodoacids by UV, UV/PS (persulfate), and UV/H2O2 was extensively investigated in this study. UV direct photolysis of 4 iodoacids followed first-order kinetics with rate constants in the range of 2.43 × 10(-4)-3.02 × 10(-3) cm(2) kJ(-1). The derived quantum yields (Ф254) of the 4 iodoacids range from 0.13 to 0.34, respectively. A quantitative structure-activity relationship (QSAR) model was subsequently established and applied to predict the direct photolysis rates of 6 other structurally similar iodoacids whose standards are commercially unavailable. At a UV dose of 140 mJ cm(-2) which is typically applied for disinfection of drinking water, the removal percentages of 4 iodoacids were only between 3.35% and 34.7%. Thus, ICH2CO2H (IAA), the most photo-recalcitrant species, was selected as the target compound for removal in the UV/PS and UV/H2O2 processes. The IAA degradation rates decreased with increasing pH from 3 to 11 in both processes. Humic acid (HA) and HCO3(-) had inhibitory effects on IAA degradation in both processes. Cl(-) adversely affected the IAA degradation in the UV/PS process but had no effect in the UV/H2O2 process. Generally, in the deionized (DI) water, surface water, treated drinking water, and secondary effluent, UV/PS process is more effective than UV/H2O2 process for IAA removal, based on the same molar ratio of oxidant: IAA. SO4(-) generated in the UV/PS process yields a greater mineralization of IAA than HO in the UV/H2O2 process. IO3(-) was the predominant end-product in the UV/PS process, while I(-) was the major end-product in the UV/H2O2 process. The respective contributions of UV, HO, and SO4(-) for IAA removal in the UV/PS process were 7.8%, 14.7%, and 77.5%, respectively, at a specific condition (1.5 µM IAA, 60 µM oxidant, and pH 7). Compared to UV/H2O2 process, UV/PS was also observed as more cost-effective process based on the electrical energy per order (EE/O) and chemical cost.


Asunto(s)
Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Fotólisis , Rayos Ultravioleta , Purificación del Agua
2.
Toxicology ; 300(1-2): 83-91, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22699156

RESUMEN

Bromate (BrO(3)(-)) is a ubiquitous by-product of using ozone to disinfect water containing bromide (Br(-)). The reactivity of BrO(3)(-) with biological reductants suggests that its systemic absorption and distribution to target tissues may display non-linear behavior as doses increase. The intent of this study is to determine the extent to which BrO(3)(-) is systemically bioavailable via oral exposure and broadly identify its pathways of degradation. In vitro experiments of BrO(3)(-) degradation in rat blood indicate a rapid initial degradation immediately upon addition that is >98% complete at concentrations up to 66µM in blood. As initial concentrations are increased, progressively lower fractions are lost prior to the first measurement. Secondary to this initial loss, a slower and predictable first order degradation rate was observed (10%/min). Losses during both phases were accompanied by increases in Br(-) concentrations indicating that the loss of BrO(3)(-) was due to its reduction. In vivo experiments were conducted using doses of BrO(3)(-) ranging from 0.077 to 15.3mg/kg, administered intravenously (IV) or orally (gavage) to female F344 rats. The variable nature and uncertain source of background concentrations of BrO(3)(-) limited derivation of terminal half-lives, but the initial half-life was approximately 10min for all dose groups. The area under the curve (AUC) and peak concentrations (C(t=5')) were linearly related to IV dose up to 0.77mg/kg; however, disproportionate increases in the AUC and C(t=5') and a large decrease in the volume of distribution was observed when IV doses of 1.9 and 3.8mg/kg were administered. The average terminal half-life of BrO(3)(-) from oral administration was 37min, but this was influenced by background levels of BrO(3)(-) at lower doses. With oral doses, the AUC and C(max) increased linearly with dose up to 15.3mgBrO(3)(-)/kg. BrO(3)(-) appeared to be 19-25% bioavailable without an obvious dose-dependency between 0.077 and 1.9mg/kg. The urinary elimination of BrO(3)(-) and Br(-) was measured from female F344 rats for four days following administration of single doses of 8.1mgKBrO(3)/kg and for 15 days after a single dose of 5.0mgKBr/kg. BrO(3)(-) elimination was detected over the first 12h, but Br(-) elimination from BrO(3)(-) over the first 48h was 18% lower than expected based on that eliminated from an equimolar dose of Br(-) (15.5±1.6 vs. 18.8±1.2µmol/kg, respectively). The cumulative excretion of Br(-) from KBr vs. KBrO(3) was equivalent 72h after administration. The recovery of unchanged administered BrO(3)(-) in the urine ranged between 6.0 and 11.3% (creatinine corrected) on the 27th day of treatment with concentrations of KBrO(3) of 15, 60, and 400mg/L of drinking water. The recovery of total urinary bromine as Br(-)+BrO(3)(-) ranged between 61 and 88%. An increase in the fraction of the daily BrO(3)(-) dose recovered in the urine was observed at the high dose to both sexes. The deficit in total bromine recovery raises the possibility that some brominated biochemicals may be produced in vivo and more slowly metabolized and eliminated. This was supported by measurements of dose-dependent increases of total organic bromine (TOBr) that was eliminated in the urine. The role these organic by-products play in BrO(3)(-)-induced cancer remains to be established.


Asunto(s)
Bromatos/farmacocinética , Absorción , Administración Oral , Animales , Bromatos/sangre , Bromatos/orina , Relación Dosis-Respuesta a Droga , Femenino , Semivida , Ratas , Ratas Endogámicas F344/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA