Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 25905, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27174567

RESUMEN

Dissecting the complexities of branched peptide-lipopolysaccharides (LPS) interactions provide rationale for the development of non-cytotoxic antibiotic adjuvants. Using various biophysical methods, we show that the branched peptide, B2088, binds to lipid A and disrupts the supramolecular organization of LPS. The disruption of outer membrane in an intact bacterium was demonstrated by fluorescence spectroscopy and checkerboard assays, the latter confirming strong to moderate synergism between B2088 and various classes of antibiotics. The potency of synergistic combinations of B2088 and antibiotics was further established by time-kill kinetics, mammalian cell culture infections model and in vivo model of bacterial keratitis. Importantly, B2088 did not show any cytotoxicity to corneal epithelial cells for at least 96 h continuous exposure or hemolytic activity even at 20 mg/ml. Peptide congeners containing norvaline, phenylalanine and tyrosine (instead of valine in B2088) displayed better synergism compared to other substitutions. We propose that high affinity and subsequent disruption of the supramolecular assembly of LPS by the branched peptides are vital for the development of non-cytotoxic antibiotic adjuvants that can enhance the accessibility of conventional antibiotics to the intracellular targets, decrease the antibiotic consumption and holds promise in averting antibiotic resistance.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/administración & dosificación , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Queratitis/tratamiento farmacológico , Lipopolisacáridos/química , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Bacterias Gramnegativas/metabolismo , Humanos , Queratitis/microbiología , Lipopolisacáridos/metabolismo , Ratones , Simulación de Dinámica Molecular , Espectrometría de Fluorescencia
2.
Acta Biomater ; 37: 155-64, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079762

RESUMEN

UNLABELLED: We report here structure-property relationship between linear and branched polyethylene imines by examining their antimicrobial activities against wide range of pathogens. Both the polymers target the cytoplasmic membrane of bacteria and yeasts, eliciting rapid microbicidal properties. Using multiscale molecular dynamic simulations, we showed that, in both fully or partially protonated forms LPEI discriminates between mammalian and bacterial model membranes whereas BPEI lacks selectivity for both the model membranes. Simulation results suggest that LPEI forms weak complex with the zwitterionic lipids whereas the side chain amino groups of BPEI sequester the zwitterionic lipids by forming tight complex. Consistent with these observations, label-free cell impedance measurements, cell viability assays and high content analysis indicate that BPEI is cytotoxic to human epithelial and fibroblasts cells. Crosslinking of BPEI onto electrospun gelatin mats attenuate the cytotoxicity for fibroblasts while retaining the antimicrobial activity against Gram-positive and yeasts strains. PEI crosslinked gelatin mats elicit bactericidal activity by contact-mediated killing and durable to leaching for 7days. The potent antimicrobial activity combined with enhanced selectivity of the crosslinked ES gelatin mats would expand the arsenel of biocides in the management of superficial skin infections. The contact-mediated microbicidal properties may avert antimicrobial resistance and expand the diversity of applications to prevent microbial contamination. STATEMENT OF SIGNIFICANCE: Current commercially available advanced wound dressings are either impregnated with metallic silver or silver salts which have side effects or may not avert antimicrobial resistance. In this article, we have used multidisciplinary approach comprising of computational, chemical and biological methods to understand the antimicrobial properties and biocompatibility of linear (LPEI) and branched (BPEI) polyethylenimines. We then applied this knowledge to develop dual purpose wound dressings containing these polymers, which encourages healing while maintain antimicrobial activity. In addition, the approach can be expanded to rationalize the antimicrobial vs. cytotoxicity of other cationic polymers and the method of crosslinking would enhance their potentials as biocides for advanced materials.


Asunto(s)
Vendajes , Desinfectantes/farmacología , Membranas Artificiales , Polietileneimina/química , Animales , Antibacterianos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Reactivos de Enlaces Cruzados/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Gelatina/química , Humanos , Indoles/química , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Polímeros/química , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA