Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Sci Rep ; 14(1): 24256, 2024 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-39415029

RESUMEN

The rapidly evolving field of radiomics has shown that radiomic features are able to capture characteristics of both tumor and normal tissue that can be used to make accurate and clinically relevant predictions. In the present study we sought to determine if radiomic features can characterize the adverse effects caused by normal tissue injury as well as identify if human embryonic stem cell (hESC) derived extracellular vesicle (EV) treatment can resolve certain adverse complications. A cohort of 72 mice (n = 12 per treatment group) were exposed to X-ray radiation to the whole lung (3 × 8 Gy) or to the apex of the right lung (3 × 12 Gy), immediately followed by retro-orbital injection of EVs. Cone-Beam Computed Tomography images were acquired before and 2 weeks after treatment. In total, 851 radiomic features were extracted from the whole lungs and < 20 features were selected to train and validate a series of random forest classification models trained to predict radiation status, EV status and treatment group. It was found that all three classification models achieved significantly high prediction accuracies on a validation subset of the dataset (AUCs of 0.91, 0.86 and 0.80 respectively). In the locally irradiated lung, a significant difference between irradiated and unirradiated groups as well as an EV sparing effect were observed in several radiomic features that were not seen in the unirradiated lung (including wavelet-LLH Kurtosis, wavelet HLL Large Area High Gray Level Emphasis, and Gray Level Non-Uniformity). Additionally, a radiation difference was not observed in a secondary comparison cohort, but there was no impact of imaging machine parameters on the radiomic signature of unirradiated mice. Our data demonstrate that radiomics has the potential to identify radiation-induced lung injury and could be applied to predict therapeutic efficacy at early timepoints.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Pulmón , Animales , Ratones , Pulmón/efectos de la radiación , Pulmón/diagnóstico por imagen , Pulmón/patología , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Vesículas Extracelulares/efectos de la radiación , Vesículas Extracelulares/metabolismo , Femenino , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología , Radiómica
2.
Neuropharmacology ; 261: 110142, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39241906

RESUMEN

Gulf War Illness (GWI) is a chronic disorder characterized by a heterogeneous set of symptoms that include pain, fatigue, anxiety, and cognitive impairment. These are thought to stem from damage caused by exposure under unpredictable stress to toxic Gulf War (GW) chemicals, which include pesticides, nerve agents, and prophylactic drugs. We hypothesized that GWI pathogenesis might be rooted in long-lasting disruption of the endocannabinoid (ECB) system, a signaling complex that serves important protective functions in the brain. Using a mouse model of GWI, we found that tissue levels of the ECB messenger, anandamide, were significantly reduced in the brain of diseased mice, compared to healthy controls. In addition, transcription of the Faah gene, which encodes for fatty acid amide hydrolase (FAAH), the enzyme that deactivates anandamide, was significant elevated in prefrontal cortex of GWI mice and brain microglia. Behavioral deficits exhibited by these animals, including heightened anxiety-like and depression-like behaviors, and defective extinction of fearful memories, were corrected by administration of the FAAH inhibitor, URB597, which normalized brain anandamide levels. Furthermore, GWI mice displayed unexpected changes in the microglial transcriptome, implying persistent dampening of homeostatic surveillance genes and abnormal expression of pro-inflammatory genes upon immune stimulation. Together, these results suggest that exposure to GW chemicals produce a deficit in brain ECB signaling which is associated with persistent alterations in microglial function. Pharmacological normalization of anandamide-mediated ECB signaling may offer an effective therapeutic strategy for ameliorating GWI symptomology.


Asunto(s)
Amidohidrolasas , Modelos Animales de Enfermedad , Endocannabinoides , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico , Alcamidas Poliinsaturadas , Transducción de Señal , Animales , Endocannabinoides/metabolismo , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/metabolismo , Ratones , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/antagonistas & inhibidores , Alcamidas Poliinsaturadas/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Carbamatos/farmacología , Ácidos Araquidónicos/metabolismo , Benzamidas/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Ansiedad/metabolismo
3.
Radiother Oncol ; 201: 110534, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293721

RESUMEN

BACKGROUND AND PURPOSE: Ultra-high dose-rate radiotherapy (FLASH) has been shown to mitigate normal tissue toxicities associated with conventional dose rate radiotherapy (CONV) without compromising tumor killing in preclinical models. A prominent challenge in preclinical radiation research, including FLASH, is validating both the physical dosimetry and the biological effects across multiple institutions. MATERIALS AND METHODS: We previously demonstrated dosimetric reproducibility of two different electron FLASH devices at separate institutions using standardized phantoms and dosimeters. In this study, tumor-free adult female mice were given 10 Gy whole brain FLASH and CONV irradiation at both institutions and evaluated for the reproducibility and temporal evolution of multiple neurobiological endpoints. RESULTS: FLASH sparing of behavioral performance on novel object recognition (4 months post-irradiation) and of electrophysiologic long-term potentiation (LTP, 5 months post-irradiation) was reproduced between institutions. Differences between FLASH and CONV on the endpoints of hippocampal neurogenesis (Sox2, doublecortin), neuroinflammation (microglial activation), and electrophysiology (LTP) were not observed at early times (48 h to 2 weeks), but recovery of immature neurons by 3 weeks was greater with FLASH. CONCLUSION: In summary, we demonstrated reproducible FLASH sparing effects on the brain between two different beams at two different institutions with validated dosimetry. FLASH sparing effects on the endpoints evaluated manifested at later but not the earliest time points.

4.
Res Sq ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108471

RESUMEN

Evidence shows that ultra-high dose-rate FLASH-radiotherapy (FLASH-RT) protects against normal tissue complications and functional decrements in the irradiated brain. Past work has shown that radiation-induced cognitive impairment, neuroinflammation and reduced structural complexity of granule cell neurons were not observed to the same extent after FLASH-RT (> MGy/s) compared to conventional dose-rate (CONV, 0.1 Gy/s) delivery. To explore the sensitivity of different neuronal populations to cranial irradiation and dose-rate modulation, hippocampal CA1 and medial prefrontal cortex (PFC) pyramidal neurons were analyzed by electron and confocal microscopy. Neuron ultrastructural analyses by electron microscopy after 10 Gy FLASH- or CONV-RT exposures indicated that irradiation had little impact on dendritic complexity and synapse density in the CA1, but did increase length and head diameter of smaller non-perforated synapses. Similarly, irradiation caused no change in PFC prelimbic/infralimbic axospinous synapse density, but reductions in non-perforated synapse diameters. While irradiation resulted in thinner myelin sheaths compared to controls, none of these metrics were dose-rate sensitive. Analysis of fluorescently labeled CA1 neurons revealed no radiation-induced or dose-rate-dependent changes in overall dendritic complexity or spine density, in contrast to our past analysis of granule cell neurons. Super-resolution confocal microscopy following a clinical dosing paradigm (3×10Gy) showed significant reductions in excitatory vesicular glutamate transporter 1 and inhibitory vesicular GABA transporter puncta density within the CA1 that were largely dose-rate independent. Collectively, these data reveal that, compared to granule cell neurons, CA1 and mPFC neurons are more radioresistant irrespective of radiation dose-rate.

5.
Nature ; 632(8027): 995-1008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38862027

RESUMEN

The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, and encompass multi-omic, single-cell and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics, as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this Perspective, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration, Japan Aerospace Exploration Agency, European Space Agency and other space agencies, and detail the entrance of the commercial spaceflight sector (including SpaceX, Blue Origin, Axiom and Sierra Space) into aerospace medicine and space biology, the first aerospace medicine biobank, and various upcoming missions that will utilize these tools to ensure a permanent human presence beyond low Earth orbit, venturing out to other planets and moons.


Asunto(s)
Medicina Aeroespacial , Astronautas , Multiómica , Vuelo Espacial , Humanos , Medicina Aeroespacial/métodos , Medicina Aeroespacial/tendencias , Bancos de Muestras Biológicas , Biomarcadores/metabolismo , Biomarcadores/análisis , Cognición , Internacionalidad , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/tendencias , Multiómica/métodos , Multiómica/tendencias , Farmacogenética/métodos , Farmacogenética/tendencias , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Vuelo Espacial/métodos , Vuelo Espacial/tendencias
6.
Semin Radiat Oncol ; 34(3): 351-364, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880544

RESUMEN

The "FLASH effect" is an increased therapeutic index, that is, reduced normal tissue toxicity for a given degree of anti-cancer efficacy, produced by ultra-rapid irradiation delivered on time scales orders of magnitude shorter than currently conventional in the clinic for the same doses. This phenomenon has been observed in numerous preclinical in vivo tumor and normal tissue models. While the underlying biological mechanism(s) remain to be elucidated, a path to clinical implementation of FLASH can be paved by addressing several critical translational questions. Technological questions pertinent to each beam type (eg, electron, proton, photon) also dictate the logical progression of experimentation required to move forward in safe and decisive clinical trials. Here we review the available preclinical data pertaining to these questions and how they may inform strategies for FLASH cancer therapy clinical trials.


Asunto(s)
Neoplasias , Investigación Biomédica Traslacional , Humanos , Neoplasias/radioterapia , Animales , Oncología por Radiación/métodos , Ensayos Clínicos como Asunto
7.
Phys Med Biol ; 69(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38722574

RESUMEN

Objective. The primary goal of this research is to demonstrate the feasibility of radiation-induced acoustic imaging (RAI) as a volumetric dosimetry tool for ultra-high dose rate FLASH electron radiotherapy (FLASH-RT) in real time. This technology aims to improve patient outcomes by accurate measurements ofin vivodose delivery to target tumor volumes.Approach. The study utilized the FLASH-capable eRT6 LINAC to deliver electron beams under various doses (1.2 Gy pulse-1to 4.95 Gy pulse-1) and instantaneous dose rates (1.55 × 105Gy s-1to 2.75 × 106Gy s-1), for imaging the beam in water and in a rabbit cadaver with RAI. A custom 256-element matrix ultrasound array was employed for real-time, volumetric (4D) imaging of individual pulses. This allowed for the exploration of dose linearity by varying the dose per pulse and analyzing the results through signal processing and image reconstruction in RAI.Main Results. By varying the dose per pulse through changes in source-to-surface distance, a direct correlation was established between the peak-to-peak amplitudes of pressure waves captured by the RAI system and the radiochromic film dose measurements. This correlation demonstrated dose rate linearity, including in the FLASH regime, without any saturation even at an instantaneous dose rate up to 2.75 × 106Gy s-1. Further, the use of the 2D matrix array enabled 4D tracking of FLASH electron beam dose distributions on animal tissue for the first time.Significance. This research successfully shows that 4Din vivodosimetry is feasible during FLASH-RT using a RAI system. It allows for precise spatial (∼mm) and temporal (25 frames s-1) monitoring of individual FLASH beamlets during delivery. This advancement is crucial for the clinical translation of FLASH-RT as enhancing the accuracy of dose delivery to the target volume the safety and efficacy of radiotherapeutic procedures will be improved.


Asunto(s)
Electrones , Animales , Conejos , Dosificación Radioterapéutica , Radiometría/métodos , Acústica , Dosimetría in Vivo/métodos
8.
Sci Rep ; 14(1): 12274, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806540

RESUMEN

Cranial irradiation used to control brain malignancies invariably leads to progressive and debilitating declines in cognition. Clinical efforts implementing hippocampal avoidance and NMDAR antagonism, have sought to minimize dose to radiosensitive neurogenic regions while normalizing excitatory/inhibitory (E/I) tone. Results of these trials have yielded only marginal benefits to cognition, prompting current studies to evaluate the potential of systemic extracellular vesicle (EV) therapy to restore neurocognitive functionality in the irradiated brain. Here we tested the hypothesis that EVs derived from inhibitory but not excitatory neuronal cultures would prove beneficial to cognition and associated pathology. Rats subjected to a clinically relevant, fractionated cranial irradiation paradigm were given multiple injections of either GABAergic- or glutamatergic-derived EV and subjected to behavioral testing. Rats treated with GABAergic but not glutamatergic EVs showed significant improvements on hippocampal- and cortical-dependent behavioral tasks. While each treatment enhanced levels of the neurotrophic factors BDNF and GDNF, only GABAergic EVs preserved granule cell neuron dendritic spine density. Additional studies conducted with GABAergic EVs, confirmed significant benefits on amygdala-dependent behavior and modest changes in synaptic plasticity as measured by long-term potentiation. These data point to a potentially more efficacious approach for resolving radiation-induced neurological deficits, possibly through a mechanism able to restore homeostatic E/I balance.


Asunto(s)
Irradiación Craneana , Vesículas Extracelulares , Neuronas GABAérgicas , Animales , Vesículas Extracelulares/metabolismo , Ratas , Irradiación Craneana/efectos adversos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de la radiación , Masculino , Hipocampo/efectos de la radiación , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/efectos de la radiación , Neuronas/metabolismo , Ácido Glutámico/metabolismo , Plasticidad Neuronal/efectos de la radiación , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Conducta Animal/efectos de la radiación
9.
Res Sq ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38464210

RESUMEN

Radiomic features were used in efforts to characterize radiation-induced normal tissue injury as well as identify if human embryonic stem cell (hESC) derived Extracellular Vesicle (EV) treatment could resolve certain adverse complications. A cohort of mice (n=12/group) were given whole lung irradiation (3×8Gy), local irradiation to the right lung apex (3×12Gy), or no irradiation. The hESC-derived EVs were systemically administered three times via retro-orbital injection immediately after each irradiation. Cone-Beam Computed Tomography (CBCT) images were acquired at baseline and 2 weeks after the final radiation/EV treatment. Whole lung image segmentation was performed and radiomic features were extracted with wavelet filtering applied. A total of 851 features were extracted per image and recursive feature elimination was used to refine, train and validate a series of random forest classification models. Classification models trained to identify irradiated from unirradiated animals or EV treated from vehicle-injected animals achieved high prediction accuracies (94% and 85%). In addition, radiomic features from the locally irradiated dataset showed significant radiation impact and EV sparing effects that were absent in the unirradiated left lung. Our data demonstrates that radiomics has the potential to characterize radiation-induced lung injury and identify therapeutic efficacy at early timepoints.

10.
Int J Radiat Oncol Biol Phys ; 119(5): 1493-1505, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387809

RESUMEN

PURPOSE: Tumor hypoxia is a major cause of treatment resistance, especially to radiation therapy at conventional dose rate (CONV), and we wanted to assess whether hypoxia does alter tumor sensitivity to FLASH. METHODS AND MATERIALS: We engrafted several tumor types (glioblastoma [GBM], head and neck cancer, and lung adenocarcinoma) subcutaneously in mice to provide a reliable and rigorous way to modulate oxygen supply via vascular clamping or carbogen breathing. We irradiated tumors using a single 20-Gy fraction at either CONV or FLASH, measured oxygen tension, monitored tumor growth, and sampled tumors for bulk RNAseq and pimonidazole analysis. Next, we inhibited glycolysis with trametinib in GBM tumors to enhance FLASH efficacy. RESULTS: Using various subcutaneous tumor models, and in contrast to CONV, FLASH retained antitumor efficacy under acute hypoxia. These findings show that in addition to normal tissue sparing, FLASH could overcome hypoxia-mediated tumor resistance. Follow-up molecular analysis using RNAseq profiling uncovered a FLASH-specific profile in human GBM that involved cell-cycle arrest, decreased ribosomal biogenesis, and a switch from oxidative phosphorylation to glycolysis. Glycolysis inhibition by trametinib enhanced FLASH efficacy in both normal and clamped conditions. CONCLUSIONS: These data provide new and specific insights showing the efficacy of FLASH in a radiation-resistant context, proving an additional benefit of FLASH over CONV.


Asunto(s)
Glioblastoma , Glucólisis , Piridonas , Pirimidinonas , Tolerancia a Radiación , Hipoxia Tumoral , Animales , Humanos , Ratones , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Piridonas/farmacología , Piridonas/uso terapéutico , Nitroimidazoles , Línea Celular Tumoral , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias de Cabeza y Cuello/radioterapia , Puntos de Control del Ciclo Celular/efectos de la radiación , Fosforilación Oxidativa , Oxígeno/metabolismo , Dióxido de Carbono
11.
Radiat Res ; 201(2): 93-103, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171489

RESUMEN

The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.


Asunto(s)
Radiación Cósmica , Mesones , Protección Radiológica , Vuelo Espacial , Humanos , Nave Espacial , Radiación Cósmica/efectos adversos , Protección Radiológica/métodos , Astronautas , Cognición , Dosis de Radiación
12.
Int J Radiat Oncol Biol Phys ; 118(4): 1110-1122, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951550

RESUMEN

PURPOSE: The capability of ultrahigh dose rate FLASH radiation therapy to generate the FLASH effect has opened the possibility to enhance the therapeutic index of radiation therapy. The contribution of the immune response has frequently been hypothesized to account for a certain fraction of the antitumor efficacy and tumor kill of FLASH but has yet to be rigorously evaluated. METHODS AND MATERIALS: To investigate the immune response as a potentially important mechanism of the antitumor effect of FLASH, various murine tumor models were grafted either subcutaneously or orthotopically into immunocompetent mice or in moderately and severely immunocompromised mice. Mice were locally irradiated with single dose (20 Gy) or hypofractionated regimens (3 × 8 or 2 × 6 Gy) using FLASH (≥2000 Gy/s) and conventional (CONV) dose rates (0.1 Gy/s), with/without anti-CTLA-4. Tumor growth was monitored over time and immune profiling performed. RESULTS: FLASH and CONV 20 Gy were isoeffective in delaying tumor growth in immunocompetent and moderately immunodeficient hosts and increased tumor doubling time to >14 days versus >7 days in control animals. Similar observations were obtained with a hypofractionated scheme, regardless of the microenvironment (subcutaneous flank vs ortho lungs). Interestingly, in profoundly immunocompromised mice, 20 Gy FLASH retained antitumor activity and significantly increased tumor doubling time to >14 days versus >8 days in control animals, suggesting a possible antitumor mechanism independent of the immune response. Analysis of the tumor microenvironment showed similar immune profiles after both irradiation modalities with significant decrease of lymphoid cells by ∼40% and a corresponding increase of myeloid cells. In addition, FLASH and CONV did not increase transforming growth factor-ß1 levels in tumors compared with unirradiated control animals. Furthermore, when a complete and long-lasting antitumor response was obtained (>140 days), both modalities of irradiation were able to generate a long-term immunologic memory response. CONCLUSIONS: The present results clearly document that the tumor responses across multiple immunocompetent and immunodeficient mouse models are largely dose rate independent and simultaneously contradict a major role of the immune response in the antitumor efficacy of FLASH. Therefore, our study indicates that FLASH is as potent as CONV in modulating antitumor immune response and can be used as an immunomodulatory agent.


Asunto(s)
Neoplasias , Animales , Ratones , Neoplasias/radioterapia , Pulmón , Dosificación Radioterapéutica , Microambiente Tumoral
13.
Nat Commun ; 14(1): 7779, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012180

RESUMEN

Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.


Asunto(s)
Radiación Cósmica , Exposición a la Radiación , Vuelo Espacial , Ratones , Masculino , Animales , Humanos , Astronautas , Radiación Cósmica/efectos adversos , Cognición
14.
Methods Cell Biol ; 180: 177-197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37890929

RESUMEN

Behavioral testing is a popular and reliable method of neurocognitive assessment of rodents but the lack of standard operating procedures has led to a high variation of protocols in use. Therefore, there exists a strong need to standardize protocols for a combined behavioral platform in order to maintain consistency across institutions and assist newcomers in the field. This paper provides details on the methodology of several behavioral tasks which have been validated in identifying radiation induced cognitive impairment as well as provide guidance on timescales and best practices. The cognitive assessments outlined here are optimized for rodent studies and either target learning and memory (open field task, object in updated location, novel object recognition, object in place, and temporal order) or mood and cognition (social interaction, elevated plus maze, light dark box, forced swim test, and fear extinction). We have utilized this platform successfully in evaluating cognitive injury induced by various radiation types, doses, fractionation schedules and also with ultra-high dose rate FLASH radiotherapy. Recommended materials and software are provided as well as advice on methods of data analysis. In this way a comprehensive behavioral platform is described with broad applicability to assess cognitive endpoints critical to therapeutic outcome.


Asunto(s)
Conducta Animal , Miedo , Animales , Miedo/psicología , Extinción Psicológica , Natación
15.
Radiother Oncol ; 188: 109906, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690668

RESUMEN

BACKGROUND AND PURPOSE: The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS: We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS: Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION: Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

16.
Life (Basel) ; 13(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374076

RESUMEN

Traditionally, the brain has been regarded as a relatively insensitive late-reacting tissue, with radiologically detectable damage not being reported at doses < 60 Gy. When NASA proposed interplanetary exploration missions, it was required to conduct an intensive health and safety evaluation of cancer, cardiovascular, and cognitive risks associated with exposure to deep space radiation (SR). The SR dose that astronauts on a mission to Mars are predicted to receive is ~300 mGy. Even after correcting for the higher RBE of the SR particles, the biologically effective SR dose (<1 Gy) would still be 60-fold lower than the threshold dose for clinically detectable neurological damage. Unexpectedly, the NASA-funded research program has consistently reported that low (<250 mGy) doses of SR induce deficits in multiple cognitive functions. This review will discuss these findings and the radical paradigm shifts in radiobiological principles for the brain that were required in light of these findings. These included a shift from cell killing to loss of function models, an expansion of the critical brain regions for radiation-induced cognitive impediments, and the concept that the neuron may not be the sole critical target for neurocognitive impairment. The accrued information on how SR exposure impacts neurocognitive performance may provide new opportunities to reduce neurocognitive impairment in brain cancer patients.

17.
Cancer Res Commun ; 3(4): 725-737, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37377749

RESUMEN

Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain. Significance: Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.


Asunto(s)
Potenciación a Largo Plazo , Enfermedades Neuroinflamatorias , Masculino , Ratones , Femenino , Animales , Plasticidad Neuronal , Hipofraccionamiento de la Dosis de Radiación
18.
Radiother Oncol ; 186: 109767, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385377

RESUMEN

Long-term potentiation (LTP) was used to gauge the impact of conventional and FLASH dose rates on synaptic transmission. Data collected from the hippocampus and medial prefrontal cortex confirmed significant inhibition of LTP after 10 fractions of 3 Gy (30 Gy total) conventional radiotherapy. Remarkably, 10x3Gy FLASH radiotherapy and unirradiated controls were identical and exhibited normal LTP.


Asunto(s)
Potenciación a Largo Plazo , Plasticidad Neuronal , Ratones , Animales , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Hipocampo/fisiología , Transmisión Sináptica/fisiología
19.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034651

RESUMEN

The molecular and cellular mechanisms driving the enhanced therapeutic ratio of ultra-high dose-rate radiotherapy (FLASH-RT) over slower conventional (CONV-RT) radiotherapy dose-rate remain to be elucidated. However, attenuated DNA damage and transient oxygen depletion are among several proposed models. Here, we tested whether FLASH-RT under physioxic (4% O 2 ) and hypoxic conditions (≤2% O 2 ) reduces genome-wide translocations relative to CONV-RT and whether any differences identified revert under normoxic (21% O 2 ) conditions. We employed high-throughput rejoin and genome-wide translocation sequencing ( HTGTS-JoinT-seq ), using S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs), to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated by electron beam CONV-RT (0.08-0.13Gy/s) and FLASH-RT (1×10 2 -5×10 6 Gy/s), under varying ionizing radiation (IR) doses and oxygen tensions. Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Thus, Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

20.
Cell Mol Life Sci ; 80(1): 29, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607431

RESUMEN

Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.


Asunto(s)
Hipocampo , Exposición a la Radiación , Femenino , Ratones , Masculino , Animales , Sinapsis , Potenciación a Largo Plazo , Plasticidad Neuronal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA