Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Malar J ; 23(1): 106, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632607

RESUMEN

BACKGROUND: To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS: The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS: Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS: This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.


Asunto(s)
Atovacuona , Vacunas contra la Malaria , Plasmodium cynomolgi , Proguanil , Animales , Primaquina/uso terapéutico , Esporozoítos , Macaca mulatta , Inmunización , Quimioprevención , Linfocitos T CD8-positivos , Combinación de Medicamentos
2.
PLoS One ; 12(2): e0171826, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28182750

RESUMEN

Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites.


Asunto(s)
Quimioprevención/métodos , Inmunización/métodos , Memoria Inmunológica , Hígado/inmunología , Malaria/prevención & control , Plasmodium/inmunología , Esporozoítos/inmunología , Animales , Anopheles/parasitología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Macaca mulatta , Malaria/inmunología , Plasmodium/crecimiento & desarrollo , Plasmodium/patogenicidad
3.
J Immunol ; 195(9): 4378-86, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26408671

RESUMEN

Studies of influenza-specific immune responses in humans have largely assessed systemic responses involving serum Ab and peripheral blood T cell responses. However, recent evidence indicates that tissue-resident memory T (TRM) cells play an important role in local murine intrapulmonary immunity. Rhesus monkeys were pulmonary exposed to 2009 pandemic H1N1 virus at days 0 and 28 and immune responses in different tissue compartments were measured. All animals were asymptomatic postinfection. Although only minimal memory immune responses were detected in peripheral blood, a high frequency of influenza nucleoprotein-specific memory T cells was detected in the lung at the "contraction phase," 49-58 d after second virus inoculation. A substantial proportion of lung nucleoprotein-specific memory CD8(+) T cells expressed CD103 and CD69, phenotypic markers of TRM cells. Lung CD103(+) and CD103(-) memory CD8(+) T cells expressed similar levels of IFN-γ and IL-2. Unlike memory T cells, spontaneous Ab secreting cells and memory B cells specific to influenza hemagglutinin were primarily observed in the mediastinal lymph nodes. Little difference in systemic and local immune responses against influenza was observed between young adult (6-8 y) and old animals (18-28 y). Using a nonhuman primate model, we revealed substantial induction of local T and B cell responses following 2009 pandemic H1N1 infection. Our study identified a subset of influenza-specific lung memory T cells characterized as TRM cells in rhesus monkeys. The rhesus monkey model may be useful to explore the role of TRM cells in local tissue protective immunity after rechallenge and vaccination.


Asunto(s)
Linfocitos B/inmunología , Memoria Inmunológica/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Macaca mulatta/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T/inmunología , Factores de Edad , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos B/metabolismo , Linfocitos B/virología , Médula Ósea/inmunología , Médula Ósea/metabolismo , Médula Ósea/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Células Cultivadas , Interacciones Huésped-Patógeno/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Cadenas alfa de Integrinas/inmunología , Cadenas alfa de Integrinas/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-2/inmunología , Interleucina-2/metabolismo , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/virología , Macaca mulatta/metabolismo , Macaca mulatta/virología , Mediastino/virología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Bazo/inmunología , Bazo/metabolismo , Bazo/virología , Linfocitos T/metabolismo , Linfocitos T/virología , Factores de Tiempo
4.
Am J Trop Med Hyg ; 90(1): 149-52, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24277784

RESUMEN

We studied cross-reactive antibodies against avian influenza H5N1 and 2009 pandemic (p) H1N1 in 200 serum samples from US military personnel collected before the H1N1 pandemic. Assays used to measure antibodies against viral proteins involved in protection included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay. Viral neutralization by antibodies against avian influenza H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based and H1N1 microneutralization assays. Some US military personnel had cross-neutralizing antibodies against H5N1 (14%) and 2009 pH1N1 (16.5%). The odds of having cross-neutralizing antibodies against 2009 pH1N1 were 4.4 times higher in subjects receiving more than five inactivated whole influenza virus vaccinations than those subjects with no record of vaccination. Although unclear if the result of prior vaccination or disease exposure, these pre-existing antibodies may prevent or reduce disease severity.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Personal Militar , Adulto , Anciano , Anticuerpos Neutralizantes , Femenino , Humanos , Gripe Humana/sangre , Gripe Humana/inmunología , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Oportunidad Relativa , Estados Unidos
5.
PLoS One ; 8(3): e59674, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555741

RESUMEN

INTRODUCTION: Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses. METHODS: In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1) weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1), and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose. RESULTS: Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI) and neutralization (NT) titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI) assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated. CONCLUSION: Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of administering single dose trivalent seasonal influenza vaccine at the outset of an influenza pandemic while a specific vaccine is being developed. TRIAL REGISTRATION: ClinicalTrials.gov NCT01044095.


Asunto(s)
Reacciones Cruzadas , Inmunización Secundaria/métodos , Gripe Aviar/inmunología , Gripe Humana/prevención & control , Orthomyxoviridae/inmunología , Pandemias/prevención & control , Vacunación/métodos , Adolescente , Adulto , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Aves , Estudios de Factibilidad , Femenino , Salud , Humanos , Inmunización Secundaria/efectos adversos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Aviar/prevención & control , Gripe Humana/epidemiología , Gripe Humana/inmunología , Masculino , Persona de Mediana Edad , Orthomyxoviridae/fisiología , Proyectos Piloto , Seguridad , Estaciones del Año , Linfocitos T/inmunología , Linfocitos T/virología , Vacunación/efectos adversos , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Adulto Joven
6.
Infect Immun ; 79(9): 3492-500, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21690242

RESUMEN

Plasmodium vivax is the major cause of malaria outside sub-Saharan Africa and inflicts debilitating morbidity and consequent economic impacts in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of a novel chimeric recombinant protein, VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Very few adjuvant formulations are currently available for human use. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study rhesus monkeys were immunized intramuscularly three times with VMP001 in combination with a stable emulsion (SE) or a synthetic Toll-like receptor 4 (TLR4) agonist (glucopyranosyl lipid A [GLA]) in SE (GLA-SE). Sera and peripheral blood mononuclear cells (PBMCs) were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of monkeys generated high titers of anti-P. vivax IgG antibodies, as detected by enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. In addition, all groups generated a cellular immune response characterized by antigen-specific CD4(+) T cells secreting predominantly interleukin-2 (IL-2) and lesser amounts of tumor necrosis factor (TNF). We conclude that the combination of VMP001 and GLA-SE is safe and immunogenic in monkeys and may serve as a potential second-generation vaccine candidate against P. vivax malaria.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Receptor Toll-Like 4/agonistas , Adyuvantes Inmunológicos , Animales , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos , Emulsiones , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Inmunoglobulina G/sangre , Interferón gamma/biosíntesis , Interleucina-2/biosíntesis , Interleucina-2/metabolismo , Lípido A/inmunología , Macaca mulatta , Malaria Vivax/inmunología , Proteínas Protozoarias/inmunología , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Vacunas Sintéticas/inmunología
7.
Biochem Biophys Res Commun ; 398(4): 752-8, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20627090

RESUMEN

Information on the immune response against H5N1 within the lung is lacking. Here we describe the sustained antiviral immune responses, as indicated by the expression of MxA protein and IFN-alpha mRNA, in autopsy lung tissue from an H5N1-infected patient. H5N1 infection of primary bronchial/tracheal epithelial cells and lung microvascular endothelial cells induced IP-10, and also up-regulated the retinoic acid-inducible gene-I (RIG-I). Down-regulation of RIG-I gene expression decreased IP-10 response. Co-culturing of H5N1-infected pulmonary cells with TNF-alpha led to synergistically enhanced production of IP-10. In the absence of viral infection, TNF-alpha and IFN-alpha also synergistically enhanced IP-10 response. Methylprednisolone showed only a partial inhibitory effect on this chemokine response. Our findings strongly suggest that both the H5N1 virus and the locally produced antiviral cytokines; IFN-alpha and TNF-alpha may have an important role in inducing IP-10 hyperresponse, leading to inflammatory damage in infected lung.


Asunto(s)
Quimiocina CXCL10/biosíntesis , Subtipo H5N1 del Virus de la Influenza A , Gripe Humana/inmunología , Pulmón/inmunología , Pulmón/virología , Neumonía Viral/inmunología , Células Cultivadas , Quimiocina CXCL10/antagonistas & inhibidores , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al GTP/biosíntesis , Humanos , Interferón-alfa/biosíntesis , Interferón-alfa/farmacología , Metilprednisolona/farmacología , Proteínas de Resistencia a Mixovirus , Receptores Inmunológicos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
9.
Vet Immunol Immunopathol ; 125(1-2): 18-30, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18571243

RESUMEN

Antigen presenting cells (APCs), especially dendritic cells (DCs), play a crucial role in immune responses against infections by sensing microbial invasion through Toll-like receptors (TLRs). In this regard, TLR ligands are attractive candidates for use in humans and animal models as vaccine adjuvants. So far, no studies have been performed on TLR expression in non-human primates such as rhesus macaques. Therefore, we studied the TLR expression patterns in different subsets of APC in rhesus macaques and compared them to similar APC subsets in human. Also, expression was compared with corresponding DC subsets from different organs from mice. Here we show by semi-quantitative RT-PCR, that blood DC subsets of rhesus macaque expressed the same sets of TLRs as those of human but substantially differed from mouse DC subsets. Macaque myeloid DCs (MDCs) expressed TLR3, 4, 7 and 8 whereas macaque plasmacytoid DCs (PDCs) expressed only TLR7 and 9. Additionally, TLR expression patterns in macaque monocyte-derived dendritic cells (mo-DCs) (i.e., TLR3, 4, 8 and 9), monocytes (i.e., TLR4, 7, and 8) and B cells (i.e., TLR4, 7, 8, and 9) were also similar to their human counterparts. However, the responsiveness of macaque APCs to certain TLR ligands partially differed from that of human in terms of phenotype differentiation and cytokine production. Strikingly, in contrast to human mo-DCs, no IL-12p70 production was observed when macaque mo-DCs were stimulated with TLR ligands. In addition, CD40 and CD86 phenotypic responses to TLR8 ligand (poly U) in mo-DCs of macaque were higher than that of human. Despite these functional differences, our results provide important information for a rational design of animal models in evaluating TLR ligands as adjuvant in vivo.


Asunto(s)
Células Dendríticas/inmunología , Macaca mulatta/inmunología , Receptores Toll-Like/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos CD/inmunología , Linfocitos B/inmunología , Citocinas/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Receptores Toll-Like/biosíntesis , Receptores Toll-Like/genética
10.
J Immunol ; 179(8): 5220-7, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17911607

RESUMEN

There is worldwide concern that the avian influenza H5N1 virus, with a mortality rate of >50%, might cause the next influenza pandemic. Unlike most other influenza infections, H5N1 infection causes a systemic disease. The underlying mechanisms for this effect are still unclear. In this study, we investigate the interplay between avian influenza H5N1 and human dendritic cells (DC). We showed that H5N1 virus can infect and replicate in monocyte-derived and blood myeloid DC, leading to cell death. These results suggest that H5N1 escapes viral-specific immunity, and could disseminate via DC. In contrast, blood pDC were resistant to infection and produced high amounts of IFN-alpha. Addition of this cytokine to monocyte-derived DC or pretreatment with TLR ligands protected against infection and the cytopathic effects of H5N1 virus.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/virología , Susceptibilidad a Enfermedades/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Interferón-alfa/metabolismo , Receptores Toll-Like/metabolismo , Animales , Antivirales/metabolismo , Aves , Linaje de la Célula/inmunología , Células Cultivadas , Técnicas de Cocultivo , Efecto Citopatogénico Viral/inmunología , Células Dendríticas/metabolismo , Humanos , Inmunidad Innata , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/inmunología , Gripe Aviar/metabolismo , Gripe Aviar/prevención & control , Interferón-alfa/fisiología , Ligandos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Datos de Secuencia Molecular , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/virología , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/fisiología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/fisiología , Receptores Toll-Like/fisiología , Replicación Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA