Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Commun ; 15(1): 996, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307858

RESUMEN

Postzygotic reproductive isolation, which results in the irreversible divergence of species, is commonly accompanied by hybrid sterility, necrosis/weakness, or lethality in the F1 or other offspring generations. Here we show that the loss of function of HWS1 and HWS2, a couple of duplicated paralogs, together confer complete interspecific incompatibility between Asian and African rice. Both of these non-Mendelian determinants encode the putative Esa1-associated factor 6 (EAF6) protein, which functions as a characteristic subunit of the histone H4 acetyltransferase complex regulating transcriptional activation via genome-wide histone modification. The proliferating tapetum and inappropriate polar nuclei arrangement cause defective pollen and seeds in F2 hybrid offspring due to the recombinant HWS1/2-mediated misregulation of vitamin (biotin and thiamine) metabolism and lipid synthesis. Evolutionary analysis of HWS1/2 suggests that this gene pair has undergone incomplete lineage sorting (ILS) and multiple gene duplication events during speciation. Our findings have not only uncovered a pair of speciation genes that control hybrid breakdown but also illustrate a passive mechanism that could be scaled up and used in the guidance and optimization of hybrid breeding applications for distant hybridization.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Reproducción , Evolución Biológica , Hibridación Genética
3.
Mol Plant ; 16(10): 1612-1634, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37740489

RESUMEN

Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.


Asunto(s)
Arabidopsis , Respuesta al Choque Térmico , Respuesta al Choque Térmico/genética , Plantas , Calor , Temperatura , Arabidopsis/metabolismo
4.
Nat Commun ; 14(1): 1640, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964129

RESUMEN

Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Ligandos , Grano Comestible/metabolismo , Transporte Biológico
5.
Nat Plants ; 8(12): 1335-1336, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509844

Asunto(s)
Biodiversidad , Plantas
6.
Mol Plant ; 15(12): 1908-1930, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36303433

RESUMEN

Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.


Asunto(s)
Oryza , Tolerancia a la Sal , Tolerancia a la Sal/genética , Oryza/genética , Hidrolasas , Familia
7.
Science ; 376(6599): 1293-1300, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35709289

RESUMEN

How the plasma membrane senses external heat-stress signals to communicate with chloroplasts to orchestrate thermotolerance remains elusive. We identified a quantitative trait locus, Thermo-tolerance 3 (TT3), consisting of two genes, TT3.1 and TT3.2, that interact together to enhance rice thermotolerance and reduce grain-yield losses caused by heat stress. Upon heat stress, plasma membrane-localized E3 ligase TT3.1 translocates to the endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation, implying that TT3.1 might serve as a potential thermosensor. Lesser accumulated, mature TT3.2 proteins in chloroplasts are essential for protecting thylakoids from heat stress. Our findings not only reveal a TT3.1-TT3.2 genetic module at one locus that transduces heat signals from plasma membrane to chloroplasts but also provide the strategy for breeding highly thermotolerant crops.


Asunto(s)
Cloroplastos , Oryza , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Termotolerancia , Cloroplastos/genética , Cloroplastos/fisiología , Genes de Plantas , Oryza/genética , Oryza/fisiología , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Termotolerancia/genética
8.
Nat Plants ; 8(1): 53-67, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992240

RESUMEN

Global warming threatens crop production. G proteins mediate plant responses to multiple abiotic stresses. Here we identified a natural quantitative trait locus, TT2 (THEROMOTOLERANCE 2), encoding a Gγ subunit, that confers thermotolerance in rice during both vegetative and reproductive growth without a yield penalty. A natural allele with loss of TT2 function was associated with greater retention of wax at high temperatures and increased thermotolerance. Mechanistically, we found that a transcription factor, SCT1 (Sensing Ca2+ Transcription factor 1), functions to decode Ca2+ through Ca2+-enhanced interaction with calmodulin and acts as a negative regulator of its target genes (for example, Wax Synthesis Regulatory 2 (OsWR2)). The calmodulin-SCT1 interaction was attenuated by reduced heat-triggered Ca2+ caused by disrupted TT2, thus explaining the observed heat-induced changes in wax content. Beyond establishing a bridge linking G protein, Ca2+ sensing and wax metabolism, our study illustrates innovative approaches for developing potentially yield-penalty-free thermotolerant crop varieties.


Asunto(s)
Oryza , Termotolerancia , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Estrés Fisiológico
9.
Mol Plant ; 15(1): 167-178, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34530166

RESUMEN

Nitrogen is an essential nutrient for plant growth and development, and plays vital roles in crop yield. Assimilation of nitrogen is thus fine-tuned in response to heterogeneous environments. However, the regulatory mechanism underlying this essential process remains largely unknown. Here, we report that a zinc-finger transcription factor, drought and salt tolerance (DST), controls nitrate assimilation in rice by regulating the expression of OsNR1.2. We found that loss of function of DST results in a significant decrease of nitrogen use efficiency (NUE) in the presence of nitrate. Further study revealed that DST is required for full nitrate reductase activity in rice and directly regulates the expression of OsNR1.2, a gene showing sequence similarity to nitrate reductase. Reverse genetics and biochemistry studies revealed that OsNR1.2 encodes an NADH-dependent nitrate reductase that is required for high NUE of rice. Interestingly, the DST-OsNR1.2 regulatory module is involved in the suppression of nitrate assimilation under drought stress, which contributes to drought tolerance. Considering the negative role of DST in stomata closure, as revealed previously, the positive role of DST in nitrogen assimilation suggests a mechanism coupling nitrogen metabolism and stomata movement. The discovery of this coupling mechanism will aid the engineering of drought-tolerant crops with high NUE in the future.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Oryza/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Tolerancia a la Sal/genética , Factores de Transcripción/efectos de los fármacos , Dedos de Zinc/efectos de los fármacos
10.
Commun Biol ; 4(1): 1171, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620988

RESUMEN

Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Flavonoides/metabolismo , Lignina/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Oryza/genética , Proteínas de Plantas/genética , Análisis de Flujos Metabólicos , Proteínas de Transporte de Catión Orgánico/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico
12.
J Integr Plant Biol ; 63(1): 180-209, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33325112

RESUMEN

Phenylpropanoid metabolism is one of the most important metabolisms in plants, yielding more than 8,000 metabolites contributing to plant development and plant-environment interplay. Phenylpropanoid metabolism materialized during the evolution of early freshwater algae that were initiating terrestrialization and land plants have evolved multiple branches of this pathway, which give rise to metabolites including lignin, flavonoids, lignans, phenylpropanoid esters, hydroxycinnamic acid amides, and sporopollenin. Recent studies have revealed that many factors participate in the regulation of phenylpropanoid metabolism, and modulate phenylpropanoid homeostasis when plants undergo successive developmental processes and are subjected to stressful environments. In this review, we summarize recent progress on elucidating the contribution of phenylpropanoid metabolism to the coordination of plant development and plant-environment interaction, and metabolic flux redirection among diverse metabolic routes. In addition, our review focuses on the regulation of phenylpropanoid metabolism at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and in response to phytohormones and biotic and abiotic stresses.


Asunto(s)
Lignina/metabolismo , Propanoles/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Nat Plants ; 6(9): 1078-1079, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32868890
15.
Plant Cell ; 32(9): 2763-2779, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32616661

RESUMEN

Grain number is a flexible trait that strongly contributes to grain yield. In rice (Oryza sativa), the OsMKKK10-OsMKK4-OsMPK6 cascade, which is negatively regulated by the dual-specificity phosphatase GSN1, coordinates the trade-off between grain number and grain size. However, the specific components upstream and downstream of the GSN1-MAPK module that regulate spikelet number per panicle remain obscure. Here, we report that ERECTA1 (OsER1), a negative regulator of spikelet number per panicle, acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade and that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway is required to maintain cytokinin homeostasis. OsMPK6 directly interacts with and phosphorylates the zinc finger transcription factor DST to enhance its transcriptional activation of CYTOKININ OXIDASE2 (OsCKX2), indicating that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle morphology by regulating cytokinin metabolism. Furthermore, overexpression of either DST or OsCKX2 rescued the spikelet number phenotype of the oser1, osmkkk10, osmkk4, and osmpk6 mutants, suggesting that the DST-OsCKX2 module genetically functions downstream of the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway. These findings reveal specific crosstalk between a MAPK signaling pathway and cytokinin metabolism, shedding light on how developmental signals modulate phytohormone homeostasis to shape the inflorescence.


Asunto(s)
Citocininas/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Citocininas/genética , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Oryza/metabolismo , Fosforilación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal
16.
Plant J ; 103(3): 1174-1188, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32365409

RESUMEN

Grain size is one of the essential components determining rice yield and is a target for both domestication and artificial breeding. Gibberellins (GAs) are diterpenoid phytohormones that influence diverse aspects of plant growth and development. Several quantitative trait loci (QTLs) have been identified that control grain size through phytohormone regulation. However, little is known about the role of GAs in the control of grain size. Here we report the cloning and characterization of a QTL, GW6 (GRAIN WIDTH 6), which encodes a GA-regulated GAST family protein and positively regulates grain width and weight. GW6 is highly expressed in the young panicle and increases grain width by promoting cell expansion in the spikelet hull. Knockout of GW6 exhibits reduced grain size and weight, whereas overexpression of GW6 results in increased grain size and weight. GW6 is induced by GA and its knockout downregulates the expression of GA biosynthesis genes and decreases GA content in the young panicle. We found that a natural variation in the cis element CAAT-box in the promoter of GW6 is associated with its expression level and grain width and weight. Furthermore, introduction of GW6 to Oryza indica variety HJX74 can lead to a 10.44% increase in rice grain yield, indicating that GW6 has great potential to improve grain yield in rice.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Genes de Plantas/genética , Giberelinas/metabolismo , Oryza/genética , Reguladores del Crecimiento de las Plantas/fisiología , Sitios de Carácter Cuantitativo/genética , Aumento de la Célula , Proliferación Celular , Clonación Molecular , Grano Comestible/genética , Técnicas de Inactivación de Genes , Genes de Plantas/fisiología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Carácter Cuantitativo Heredable
17.
Nat Commun ; 11(1): 2629, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457405

RESUMEN

Grain size is an important component trait of grain yield, which is frequently threatened by abiotic stress. However, little is known about how grain yield and abiotic stress tolerance are regulated. Here, we characterize GSA1, a quantitative trait locus (QTL) regulating grain size and abiotic stress tolerance associated with metabolic flux redirection. GSA1 encodes a UDP-glucosyltransferase, which exhibits glucosyltransferase activity toward flavonoids and monolignols. GSA1 regulates grain size by modulating cell proliferation and expansion, which are regulated by flavonoid-mediated auxin levels and related gene expression. GSA1 is required for the redirection of metabolic flux from lignin biosynthesis to flavonoid biosynthesis under abiotic stress and the accumulation of flavonoid glycosides, which protect rice against abiotic stress. GSA1 overexpression results in larger grains and enhanced abiotic stress tolerance. Our findings provide insights into the regulation of grain size and abiotic stress tolerance associated with metabolic flux redirection and a potential means to improve crops.


Asunto(s)
Adaptación Fisiológica , Grano Comestible/metabolismo , Glucosiltransferasas/metabolismo , Oryza/metabolismo , Aumento de la Célula , Proliferación Celular , Grano Comestible/citología , Grano Comestible/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Redes y Vías Metabólicas , Oryza/citología , Oryza/genética , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo
18.
Plant Physiol ; 182(3): 1346-1358, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31882455

RESUMEN

Phosphoinositides (PIs) as regulatory membrane lipids play essential roles in multiple cellular processes. Although the exact molecular targets of PI-dependent modulation remain largely elusive, the effects of disturbed PI metabolism could be employed to identify regulatory modules associated with particular downstream targets of PIs. Here, we identified the role of GRAIN NUMBER AND PLANT HEIGHT1 (GH1), which encodes a suppressor of actin (SAC) domain-containing phosphatase with unknown function in rice (Oryza sativa). Endoplasmic reticulum-localized GH1 specifically dephosphorylated and hydrolyzed phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Inactivation of GH1 resulted in massive accumulation of both PI4P and PI(4,5)P2, while excessive GH1 caused their depletion. Notably, superabundant PI4P and PI(4,5)P2 could both disrupt actin cytoskeleton organization and suppress cell elongation. Interestingly, both PI4P and PI(4,5)P2 inhibited actin-related protein2 and -3 (Arp2/3) complex-nucleated actin-branching networks in vitro, whereas PI(4,5)P2 showed more dramatic effects in a dose-dependent manner. Overall, the overaccumulation of PI(4,5)P2 resulting from dysfunction of SAC phosphatase possibly perturbs Arp2/3 complex-mediated actin polymerization, thereby disordering cell development. These findings imply that the Arp2/3 complex might be the potential molecular target of PI(4,5)P2-dependent modulation in eukaryotes, thereby providing insights into the relationship between PI homeostasis and plant growth and development.


Asunto(s)
Oryza/enzimología , Oryza/crecimiento & desarrollo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Oryza/genética , Fosfoinosítido Fosfatasas/genética , Proteínas de Plantas/metabolismo
19.
J Integr Plant Biol ; 62(5): 581-600, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31081210

RESUMEN

Auxin is a crucial phytohormone, controlling multiple aspects of plant growth and responses to the changing environment. However, the role of local auxin biosynthesis in specific developmental programs remains unknown in crops. This study characterized the rice tillering and small grain 1 (tsg1) mutant, which has more tillers but a smaller panicle and grain size resulting from a reduction in endogenous auxin. TSG1 encodes a tryptophan aminotransferase that is allelic to the FISH BONE (FIB) gene. The tsg1 mutant showed hypersensitivity to indole-3-acetic acid and the competitive inhibitor of aminotransferase, L-kynurenine. TSG1 knockout resulted in an increased tiller number but reduction in grain number and size, and decrease in height. Meanwhile, deletion of the TSG1 homologs OsTAR1, OsTARL1, and OsTARL2 caused no obvious changes, although the phenotype of the TSG1/OsTAR1 double mutant was intensified and infertile, suggesting gene redundancy in the rice tryptophan aminotransferase family. Interestingly, TSG1 and OsTAR1, but not OsTARL1 and OsTARL2, displayed marked aminotransferase activity. Meanwhile, subcellular localization was identified as the endoplasmic reticulum, while phylogenetic analysis revealed functional divergence of TSG1 and OsTAR1 from OsTARL1 and OsTARL2. These findings suggest that TSG1 dominates the tryptophan aminotransferase family, playing a prominent role in local auxin biosynthesis in rice.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Triptófano-Transaminasa/genética , Triptófano-Transaminasa/metabolismo
20.
BMC Plant Biol ; 19(1): 395, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31510917

RESUMEN

BACKGROUND: Leaf morphology and spikelet number are two important traits associated with grain yield. To understand how genes coordinating with sink and sources of cereal crops is important for grain yield improvement guidance. Although many researches focus on leaf morphology or grain number in rice, the regulating molecular mechanisms are still unclear. RESULTS: In this study, we identified a prohibitin complex 2α subunit, NAL8, that contributes to multiple developmental process and is required for normal leaf width and spikelet number at the reproductive stage in rice. These results were consistent with the ubiquitous expression pattern of NAL8 gene. We used genetic complementation, CRISPR/Cas9 gene editing system, RNAi gene silenced system and overexpressing system to generate transgenic plants for confirming the fuctions of NAL8. Mutation of NAL8 causes a reduction in the number of plastoglobules and shrunken thylakoids in chloroplasts, resulting in reduced cell division. In addition, the auxin levels in nal8 mutants are higher than in TQ, while the cytokinin levels are lower than in TQ. Moreover, RNA-sequencing and proteomics analysis shows that NAL8 is involved in multiple hormone signaling pathways as well as photosynthesis in chloroplasts and respiration in mitochondria. CONCLUSIONS: Our findings provide new insights into the way that NAL8 functions as a molecular chaperone in regulating plant leaf morphology and spikelet number through its effects on mitochondria and chloroplasts associated with cell division.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Cloroplastos/fisiología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Mitocondrias/fisiología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Prohibitinas , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA