Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
RSC Adv ; 14(26): 18695-18702, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38863823

RESUMEN

The coupling of the hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR) to produce clean hydrogen energy with value-added chemicals has attracted substantial attention. However, achieving high selectivity for formate production in the MOR and high faradaic efficiency for H2 evolution remain significant challenges. In light of this, this study constructs an Ru/Ni(OH)2/NF catalyst on nickel foam (NF) and evaluates its electrochemical performance in the MOR and HER under alkaline conditions. The results indicate that the synergistic effect of Ni(OH)2 and Ru can promote the catalytic activity. At an overpotential of only 42 mV, the current density for the HER reaches 10 mA cm-2. Moreover, in a KOH solution containing 1 M methanol, a potential of only 1.36 V vs. RHE is required to achieve an MOR current density of 10 mA cm-2. Using Ru/Ni(OH)2/NF as a bifunctional catalyst, employed as both the anode and cathode, an MOR-coupled HER electrolysis cell can achieve a current density of 10 mA cm-2 with a voltage of only 1.45 V. Importantly, the faradaic efficiency (FE) for the hydrogen production at the cathode and formate (HCOO-) production at the anode approaches 100%. Therefore, this study holds significant practical implications for the development of methanol electro-oxidation for formate-coupled water electrolysis hydrogen production technology.

2.
Opt Express ; 32(11): 19655-19664, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859095

RESUMEN

A cost-effective method to achieve a 2-3 µm wavelength light source on silicon represents a major challenge. In this study, we have developed a novel approach that combines an epitaxial growth and the ion-slicing technique. A 2.1 µm wavelength laser on a wafer-scale heterogeneous integrated InP/SiO2/Si (InPOI) substrate fabricated by ion-slicing technique was achieved by epitaxial growth. The performance of the lasers on the InPOI are comparable with the InP, where the threshold current density (Jth) was 1.3 kA/cm2 at 283 K when operated under continuous wave (CW) mode. The high thermal conductivity of Si resulted in improved high-temperature laser performance on the InPOI. The proposed method offers a novel means of integrating an on-chip light source.

3.
Phytomedicine ; 130: 155737, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38772183

RESUMEN

BACKGROUND: Caenorhabditis elegans (C. elegans) has been recognized for being a useful model organism in small-molecule drug screens and drug efficacy investigation. However, there remain bottlenecks in evaluating such processes as drug uptake and distribution due to a lack of appropriate chemical tools. PURPOSE: This study aims to prepare fluorescence-labeled leonurine as an example to monitor drug uptake and distribution of small molecule in C. elegans and living cells. METHODS: FITC-conjugated leonurine (leonurine-P) was synthesized and characterized by LC/MS, NMR, UV absorption and fluorescence intensity. Leonurine-P was used to stain C. elegans and various mammalian cell lines. Different concentrations of leonurine were tested in conjunction with a competing parent molecule to determine whether leonurine-P and leonurine shared the same biological targets. Drug distribution was analyzed by imaging. Fluorometry in microplates and flow cytometry were performed for quantitative measurements of drug uptake. RESULTS: The UV absorption peak of leonurine-P was 490∼495 nm and emission peak was 520 nm. Leonurine-P specifically bound to endogenous protein targets in C. elegans and mammalian cells, which was competitively blocked by leonurine. The highest enrichment levels of leonurine-P were observed around 72 h following exposure in C. elegans. Leonurine-P can be used in a variety of cells to observe drug distribution dynamics. Flow cytometry of stained cells can be facilely carried out to quantitatively detect probe signals. CONCLUSIONS: The strategy of fluorescein-labeled drugs reported herein allows quantification of drug enrichment and visualization of drug distribution, thus illustrates a convenient approach to study phytodrugs in pharmacological contexts.


Asunto(s)
Caenorhabditis elegans , Ácido Gálico , Animales , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacocinética , Ácido Gálico/metabolismo , Humanos , Fluoresceína-5-Isotiocianato/análogos & derivados , Citometría de Flujo , Fluorescencia , Colorantes Fluorescentes
5.
Light Sci Appl ; 13(1): 71, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462605

RESUMEN

A reliable, efficient and electrically-pumped Si-based laser is considered as the main challenge to achieve the integration of all key building blocks with silicon photonics. Despite the impressive advances that have been made in developing 1.3-µm Si-based quantum dot (QD) lasers, extending the wavelength window to the widely used 1.55-µm telecommunication region remains difficult. In this study, we develop a novel photonic integration method of epitaxial growth of III-V on a wafer-scale InP-on-Si (100) (InPOS) heterogeneous substrate fabricated by the ion-cutting technique to realize integrated lasers on Si substrate. This ion-cutting plus epitaxial growth approach decouples the correlated root causes of many detrimental dislocations during heteroepitaxial growth, namely lattice and domain mismatches. Using this approach, we achieved state-of-the-art performance of the electrically-pumped, continuous-wave (CW) 1.55-µm Si-based laser with a room-temperature threshold current density of 0.65 kA/cm-2, and output power exceeding 155 mW per facet without facet coating in CW mode. CW lasing at 120 °C and pulsed lasing at over 130 °C were achieved. This generic approach is also applied to other material systems to provide better performance and more functionalities for photonics and microelectronics.

6.
Cell Chem Biol ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38382532

RESUMEN

Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.

7.
J Gastroenterol ; 59(4): 342-356, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38402297

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a rapidly progressing chronic liver disease of global significance. However, the underlying mechanisms responsible for NASH remain unknown. Indoleamine 2,3-dioxygenase 1 (IDO1) has been recognized as essential factor in immune response and metabolic regulation. Here we aimed to investigate the functions and mechanisms of the IDO1 in macrophages on hepatic lipid deposition and iron metabolism in NASH. METHODS: The effect of IDO1 in NASH was evaluated by WT and IDO1-/- mice model fed with methionine/choline-deficient (MCD) diet in vivo. Macrophages scavenger clodronate liposomes (CL) and overexpressing of IDO1 in macrophages by virus were employed as well. Lipid deposition was assessed through pathological examination and lipid droplet staining, while iron levels were measured using an iron assay kit and western blotting. Primary hepatocytes and bone marrow-derived macrophages were treated with oleic acid/palmitic acid (OA/PA) to assess IDO1 expression via Oil Red O staining and immunofluorescence staining in vitro. RESULTS: Pathological images demonstrated that the increase of IDO1 exacerbated lipid accumulation in the livers of mice with MCD diet, while reduction of iron accumulation was observed in the liver and the serum of MCD-fed mice. Scavenging of macrophages effectively mitigated both lipid and iron accumulation. In addition, the deficiency of IDO1 in macrophages significantly mitigated lipid accumulation and iron overload in hepatic parenchymal cells. Finally, lentivirus-mediated overexpression of IDO1 in liver macrophages exacerbated hepatic steatosis and iron deposition in NASH. CONCLUSIONS: Our results demonstrated that effective inhibition of IDO1 expression in macrophages in NASH alleviated hepatic parenchymal cell lipid accumulation and iron deposition, which provided new insights for the future treatment of NASH.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Colina , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Hierro/metabolismo , Hierro/farmacología , Metabolismo de los Lípidos , Hígado/patología , Macrófagos/metabolismo , Metionina , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Palmítico/farmacología
8.
Adv Sci (Weinh) ; 11(10): e2303388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145956

RESUMEN

Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo. Mechanistically, the TNF-α-induced expression of KAT2A promotes the succinylation of VCP at K658, which inhibits the interaction between VCP and MFN1 and thus inhibits mitophagy. Furthermore, activated BMMSC exhibits stronger fracture repair and immunoregulation functions in vivo. This study contributes to a better understanding of the mechanisms of BMMSC quiescence and activation and to improving the effectiveness of BMMSC in clinical applications.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/metabolismo , Mitofagia , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular
9.
Sci Adv ; 9(46): eadf4345, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976359

RESUMEN

Iron deficiency (ID) is a widespread condition concomitant with disease and results in systemic dysfunction of target tissues including skeletal muscle. Activated by ID, ferritinophagy is a recently found type of selective autophagy, which plays an important role in various physiological and pathological conditions. In this study, we demonstrated that ID-mediated ferritinophagy impeded myogenic differentiation. Mechanistically, ferritinophagy induced RNF20 degradation through the autophagy-lysosomal pathway and then negatively regulated histone H2B monoubiquitination at lysine-120 in the promoters of the myogenic markers MyoD and MyoG, which inhibited myogenic differentiation and regeneration. Conditional knockout of NCOA4 in satellite cells, overexpression of RNF20 or treatment with 3-methyladenine restored skeletal muscle regenerative potential under ID conditions. In patients with ID, RNF20 and H2Bub1 protein expression is downregulated in skeletal muscle. In conclusion, our study indicated that the ferritinophagy-RNF20-H2Bub1 axis is a pathological molecular mechanism underlying ID-induced skeletal muscle impairment, suggesting potential therapeutic prospects.


Asunto(s)
Histonas , Ubiquitina-Proteína Ligasas , Humanos , Histonas/metabolismo , Músculo Esquelético/metabolismo , Regeneración , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
J Nanobiotechnology ; 21(1): 280, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598147

RESUMEN

Sustained inflammatory invasion leads to joint damage and progressive disability in several autoimmune rheumatic diseases. In recent decades, targeting M1 macrophage polarization has been suggested as a promising therapeutic strategy for autoimmune arthritis. P300/CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) that exhibits a strong positive relationship with the proinflammatory microenvironment. However, whether PCAF mediates M1 macrophage polarization remains poorly studied, and whether targeting PCAF can protect against autoimmune arthritis in vivo remains unclear. Commonly used drugs can cause serious side effects in patients because of their extensive and nonspecific distribution in the human body. One strategy for overcoming this challenge is to develop drug nanocarriers that target the drug to desirable regions and reduce the fraction of drug that reaches undesirable targets. In this study, we demonstrated that PCAF inhibition could effectively inhibit M1 polarization and alleviate arthritis in mice with collagen-induced arthritis (CIA) via synergistic NF-κB and H3K9Ac blockade. We further designed dextran sulfate (DS)-based nanoparticles (DSNPs) carrying garcinol (a PCAF inhibitor) to specifically target M1 macrophages in inflamed joints of the CIA mouse model via SR-A-SR-A ligand interactions. Compared to free garcinol, garcinol-loaded DSNPs selectively targeted M1 macrophages in inflamed joints and significantly improved therapeutic efficacy in vivo. In summary, our study indicates that targeted PCAF inhibition with nanoparticles might be a promising strategy for treating autoimmune arthritis via M1 macrophage polarization inhibition.


Asunto(s)
Artritis , FN-kappa B , Humanos , Animales , Ratones , Terpenos , Macrófagos
12.
Exp Mol Med ; 55(8): 1743-1756, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37524872

RESUMEN

Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H2O2 stimulation or UV irradiation. Downregulation of ALKBH5 expression facilitated MSC senescence by enhancing the stability of CYP1B1 mRNA and inducing mitochondrial dysfunction. In addition, IGF2BP1 was identified as the m6A reader restraining the degradation of m6A-modified CYP1B1 mRNA. Furthermore, Alkbh5 knockout in MSCs aggravated spontaneous OA in mice, and overexpression of Alkbh5 improved the efficacy of MSCs in OA. Overall, this study revealed a novel mechanism of m6A in MSC senescence and identified promising targets to protect against aging and OA.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Células Madre Mesenquimatosas , Osteoartritis , Animales , Ratones , Desmetilación , Peróxido de Hidrógeno , Osteoartritis/genética , Estabilidad del ARN , ARN Mensajero/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo
13.
J Adv Res ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37499939

RESUMEN

INTRODUCTION: Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES: We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS: Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS: Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION: Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.

14.
Bone Res ; 11(1): 30, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37280207

RESUMEN

As the major cell precursors in osteogenesis, mesenchymal stem cells (MSCs) are indispensable for bone homeostasis and development. However, the primary mechanisms regulating osteogenic differentiation are controversial. Composed of multiple constituent enhancers, super enhancers (SEs) are powerful cis-regulatory elements that identify genes that ensure sequential differentiation. The present study demonstrated that SEs were indispensable for MSC osteogenesis and involved in osteoporosis development. Through integrated analysis, we identified the most common SE-targeted and osteoporosis-related osteogenic gene, ZBTB16. ZBTB16, positively regulated by SEs, promoted MSC osteogenesis but was expressed at lower levels in osteoporosis. Mechanistically, SEs recruited bromodomain containing 4 (BRD4) at the site of ZBTB16, which then bound to RNA polymerase II-associated protein 2 (RPAP2) that transported RNA polymerase II (POL II) into the nucleus. The subsequent synergistic regulation of POL II carboxyterminal domain (CTD) phosphorylation by BRD4 and RPAP2 initiated ZBTB16 transcriptional elongation, which facilitated MSC osteogenesis via the key osteogenic transcription factor SP7. Bone-targeting ZBTB16 overexpression had a therapeutic effect on the decreased bone density and remodeling capacity of Brd4fl/fl Prx1-cre mice and osteoporosis (OP) models. Therefore, our study shows that SEs orchestrate the osteogenesis of MSCs by targeting ZBTB16 expression, which provides an attractive focus and therapeutic target for osteoporosis. Without SEs located on osteogenic genes, BRD4 is not able to bind to osteogenic identity genes due to its closed structure before osteogenesis. During osteogenesis, histones on osteogenic identity genes are acetylated, and OB-gain SEs appear, enabling the binding of BRD4 to the osteogenic identity gene ZBTB16. RPAP2 transports RNA Pol II from the cytoplasm to the nucleus and guides Pol II to target ZBTB16 via recognition of the navigator BRD4 on SEs. After the binding of the RPAP2-Pol II complex to BRD4 on SEs, RPAP2 dephosphorylates Ser5 at the Pol II CTD to terminate the transcriptional pause, and BRD4 phosphorylates Ser2 at the Pol II CTD to initiate transcriptional elongation, which synergistically drives efficient transcription of ZBTB16, ensuring proper osteogenesis. Dysregulation of SE-mediated ZBTB16 expression leads to osteoporosis, and bone-targeting ZBTB16 overexpression is efficient in accelerating bone repair and treating osteoporosis.

16.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36795489

RESUMEN

Mesenchymal stem cells (MSCs) possess strong immunoregulatory functions, one aspect of which is recruiting monocytes from peripheral vessels to local tissue by secreting monocyte chemoattractant protein 1 (MCP1). However, the regulatory mechanisms of MCP1 secretion in MSCs are still unclear. Recently, the N6-methyladenosine (m6A) modification was reported to be involved in the functional regulation of MSCs. In this study, we demonstrated that methyltransferase-like 16 (METTL16) negatively regulated MCP1 expression in MSCs through the m6A modification. Specifically, the expression of METTL16 in MSCs decreased gradually and was negatively correlated with the expression of MCP1 after coculture with monocytes. Knocking down METTL16 markedly enhanced MCP1 expression and the ability to recruit monocytes. Mechanistically, knocking down METTL16 decreased MCP1 mRNA degradation, which was mediated by the m6A reader YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2). We further revealed that YTHDF2 specifically recognized m6A sites on MCP1 mRNA in the CDS region and thus negatively regulated MCP1 expression. Moreover, an in vivo assay showed that MSCs transfected with METTL16 siRNA showed greater ability to recruit monocytes. These findings reveal a potential mechanism by which the m6A methylase METTL16 regulates MCP1 expression through YTHDF2-mediated mRNA degradation and suggest a potential strategy to manipulate MCP1 expression in MSCs.


Asunto(s)
Células Madre Mesenquimatosas , Monocitos , Monocitos/metabolismo , Quimiocina CCL2/genética , Adenosina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo
17.
J Adv Res ; 50: 117-133, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36265762

RESUMEN

INTRODUCTION: Myogenic differentiation plays an important role in pathophysiological processes including muscle injury and regeneration, as well as muscle atrophy. A novel type of posttranslational modification, crotonylation, has been reported to play a role in stem cell differentiation and disease. However, the role of crotonylation in myogenic differentiation has not been clarified. OBJECTIVES: This study aims to find the role of crotonylation during myogenic differentiation and explore whether it is a potential target in myogenic dysfunction disease. METHODS: C2C12 cell line and skeletal muscle mesenchymal progenitors of Mus musculus were used for myogenic process study in vitro, while muscle injury model of mice was used for in vivo muscle regeneration study. Mass spectrometry favored in discovery of potential target protein of crotonylation and its specific sites. RESULTS: We confirmed the gradual decrease in total protein crotonylation level during muscle differentiation and found decreased crotonylation of AKT1, which facilitated an increase in AKT1 phosphorylation. Then we verified that crotonylation of AKT1 at specific sites weakened its binding with PDK1 and impaired its phosphorylation. In addition, we found that increased expression of the crotonylation eraser HDAC3 decreased AKT1 crotonylation levels during myogenic differentiation, jointly promoting myogenic differentiation. CONCLUSION: Our study highlights the important role of decrotonylation of AKT1 in the process of muscle differentiation, where it aids the phosphorylation and activation of AKT1 and promotes myogenic differentiation. This is of great significance for exploring the pathophysiological process of muscle injury repair and sarcopenia.


Asunto(s)
Músculo Esquelético , Atrofia Muscular , Animales , Ratones , Diferenciación Celular , Línea Celular , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Fosforilación
18.
J Biomed Sci ; 29(1): 73, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36127734

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) exhibit two bidirectional immunomodulatory abilities: proinflammatory and anti-inflammatory regulatory effects. Long noncoding RNAs (lncRNAs) have important functions in the immune system. Previously, we performed high-throughput sequencing comparing lncRNA expression profiles between MSCs cocultured with or without CD14+ monocytes and screened out a new lncRNA termed lncRNA MCP1 regulatory factor (MRF). However, the mechanism of MRF in MSCs is still unknown. METHODS: MRF expression was quantified via qRT-PCR. RNA interference and lentiviruses were used to regulate MRF expression. The immunomodulatory effects of MSCs on monocytes were evaluated via monocyte migration and macrophage polarization assays. RNA pull-down and mass spectrometry were utilized to identify downstream factors of MRF. A dual-luciferase reporter assay was applied to analyze the transcription factors regulating MRF. qRT-PCR, western blotting and ELISAs were used to assess MCP1 expression. A human monocyte adoptive transfer mouse model was applied to verify the function of MRF in vivo. RESULTS: MRF was upregulated in MSCs during coculture with CD14+ monocytes. MRF increased monocyte recruitment by upregulating the expression of monocyte chemotactic protein (MCP1). Knockdown of MRF enhanced the regulatory effect of MSCs on restraining M1 polarization and facilitating M2 polarization. Mechanistically, MRF bound to the downstream protein heterogeneous nuclear ribonucleoprotein D (HNRNPD) to upregulate MCP1 expression, and the transcription factor interferon regulatory factor 1 (IRF1) activated MRF transcription early during coculture. The human monocyte adoptive transfer model showed that MRF downregulation in MSCs inhibited monocyte chemotaxis and enhanced the effects of MSCs to inhibit M1 macrophage polarization and promote M2 polarization in vivo. CONCLUSION: We identified the new lncRNA MRF, which exhibits proinflammatory characteristics. MRF regulates the ability of MSCs to accelerate monocyte recruitment and modulate macrophage polarization through the HNRNPD-MCP1 axis and initiates the proinflammatory regulatory process in MSCs, suggesting that MRF is a potential target to improve the clinical effect of MSC-based therapy or correct MSC-related immunomodulatory dysfunction under pathological conditions.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo D , Células Madre Mesenquimatosas , ARN Largo no Codificante , Animales , Antiinflamatorios/farmacología , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/farmacología , Humanos , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/farmacología , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteínas Quimioatrayentes de Monocitos/metabolismo , Proteínas Quimioatrayentes de Monocitos/farmacología , Monocitos/metabolismo , ARN Largo no Codificante/metabolismo
19.
J Proteomics ; 264: 104634, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35661764

RESUMEN

A major pathological mechanism involved in vascular remodeling diseases is the proliferation and migration of vascular smooth muscle cells. The lipid distribution of golden hamsters is similar to that of humans, which makes them an excellent study model for studying the pathogenesis and molecular characteristics of vascular remodeling diseases. We performed proteomic analysis on Sprague Dawley rat VSMCs (rVSMCs) and restenosis hamsters with low-density lipoprotein receptor (LDLR) deficiency as part of this study. We have also performed the enrichment analysis of differentially modified proteins in regards to Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein domain. 1070 differentially abundant proteins were assessed in rVSMCs before and after platelet-derived growth factor-BB (PDGF-BB) stimulation. Specifically, 1246 proteins displayed significant differences in the restenosis model in LDLR-deficient hamsters. An analysis of crosstalk between LDLR+/- hamsters artery restenosis and proliferating rVSMCs revealed 130 differentially expressed proteins, including 67 up-regulated proteins and 63 downregulated proteins. Enrichment analysis with KEGG showed differential proteins to be mainly concentrated in metabolic pathways. There are numerous differentially abundant proteins but particularly two proteins (phosphofructokinase 1 of liver type and lactate dehydrogenase A) were found to be up-regulated by PDGF-BB stimulation of rVSMCs and in a restenosis model of hamsters with LDLR+/- expression. SIGNIFICANCE: Based on bioinformatics, we have found glycolysis pathway plays an important role in both the LDLR+/- hamsters restenosis model and the proliferation of rVSMCs. Some key glycolysis enzymes may likely be developed either as new biomarkers or drug targets for vascular remodeling diseases.


Asunto(s)
Músculo Liso Vascular , Receptores de LDL/metabolismo , Remodelación Vascular , Animales , Becaplermina/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cricetinae , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteómica , Ratas , Ratas Sprague-Dawley
20.
Cell Mol Biol Lett ; 27(1): 47, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705912

RESUMEN

BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. METHODS: High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA-promoter and tsRNA-mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. RESULTS: Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3'-untranslated region (UTR)-targeted manner. CONCLUSIONS: During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation.


Asunto(s)
MicroARNs , Miocitos del Músculo Liso , Regiones no Traducidas 3' , Aorta/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA