RESUMEN
BACKGROUND/OBJECTIVE: The genetic landscape of sensorineural hearing impairment (SNHI) varies across populations. In Mongolia, previous studies have shown a lower prevalence of GJB2 mutations and a higher frequency of variants in other deafness-related genes. This study aimed to investigate the genetic variants associated with idiopathic SNHI in Mongolian patients. METHODS: We utilized the next-generation sequencing for investigating the causative mutations in 99 Mongolian patients with SNHI. RESULTS: We identified pathogenic variants in 53 of the 99 SNHI patients (54%), with SLC26A4 being the most frequently mutated gene. The c.919-2A>G variant in SLC26A4 was the most prevalent, accounting for 46.2% of the mutant alleles. In addition, we identified 19 other known and 21 novel mutations in a total of 21 SNHI genes in autosomal recessive or dominant inheritance patterns. CONCLUSIONS: Our findings expand the understanding of the genetic landscape of SNHI in Mongolia and highlight the importance of considering population-specific variations in genetic testing and counseling for SNHI.
Asunto(s)
Pérdida Auditiva Sensorineural , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Transportadores de Sulfato , Humanos , Mongolia/epidemiología , Masculino , Femenino , Pérdida Auditiva Sensorineural/genética , Transportadores de Sulfato/genética , Conexina 26/genética , Adulto , Niño , Adolescente , Preescolar , Adulto Joven , Persona de Mediana EdadRESUMEN
Purpose: Cone-rod dystrophies (CORD) are inherited retinal dystrophies characterized by primary cone degeneration with secondary rod involvement. We report two patients from the same family with a dominant variant in the guanylate cyclase 2D (GUCY2D) gene with different phenotypes in the electroretinogram (ERG). Observations: A 21-year-old lady (Patient 1) was referred due to experiencing blurry vision and color vision impairment. Visual field testing revealed a central scotoma. Spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) documented macula dysfunction. Reduced amplitude was observed in the photopic responses of ERG. Her 54-year-old father (Patient 2) had similar issues with blurry vision. A dilated fundus examination displayed bilateral macular atrophy. Loss of the ellipsoid zone line and collapse of the outer nuclear segment were noted on the SD-OCT. Photopic ERG responses were extinguished, and an electronegative ERG was observed in the dark-adapted 3.0 ERG. The gene report revealed a c.2512C > T (p.Arg838Cys) variant in GUCY2D for both patients. They were respectively diagnosed as cone dystrophy (COD) and cone-rod dystrophy (CORD). Conclusions: We report two different clinical phenotypes in GUCY2D-associated COD despite sharing the same variant. A dysfunction in the synaptic junction between the photoreceptor and the secondary neuron was proposed to explain the electronegative ERG. This explanation might extend to other gene-related cases of CORD with electronegative ERG.
RESUMEN
PURPOSE: This study aims to explore genetic variants that potentially lead to outer retinal tubulation (ORT), estimate the prevalence of ORT in these candidate genes, and investigate the clinical etiology of ORT in patients with inherited retinal diseases (IRDs), with respect to each gene. DESIGN: Retrospective cohort study. METHODS: A retrospective cross-sectional review was conducted on 565 patients with molecular diagnoses of IRD, confirming the presence of ORT as noted in each patient's respective spectral-domain optical coherence tomography (SD-OCT) imaging. Using SD-OCT imaging, the presence of ORT was analyzed in relation to specific genetic variants and phenotypic characteristics. Outcomes included the observed ORT frequencies across 2 gene-specific cohorts: non-retinal pigment epithelium (RPE)-specific genes, and RPE-specific genes; and to investigate the analogous characteristics caused by variants in these genes. RESULTS: Among the 565 patients included in this study, 104 exhibited ORT on SD-OCT. We observed ORT frequencies among the following genes from our patient cohort: 100% (23/23) for CHM, 100% (2/2) for PNPLA6, 100% (4/4) for RCBTB1, 100% for mtDNA [100% (4/4) for MT-TL1 and 100% (1/1) for mtDNA deletion], 100% (1/1) for OAT, 95.2% (20/21) for CYP4V2, 72.7% (8/11) for CHM female carriers, 66.7% (2/3) for C1QTNF5, 57.1% (8/14) for PROM1, 53.8% (7/13) for PRPH2, 42.9% (3/7) for CERKL, 28.6% (2/7) for CDHR1, 20% (1/5) for RPE65, 4% (18/445) for ABCA4. In contrast, ORT was not observed in any patients with photoreceptor-specific gene variants, such as RHO (n = 13), USH2A (n = 118), EYS (n = 70), PDE6B (n = 10), PDE6A (n = 4), and others. CONCLUSIONS: These results illustrate a compelling association between the presence of ORT and IRDs caused by variants in RPE-specific genes, as well as non-RPE-specific genes. In contrast, IRDs caused by photoreceptor-specific genes are typically not associated with ORT occurrence. Further analysis revealed that ORT tends to manifest in IRDs with milder intraretinal pigment migration (IPM), a finding that is typically associated with RPE-specific genes. These findings regarding ORT, genetic factors, atrophic patterns in the fundus, and IPM provide valuable insight into the complex etiology of IRDs. Future prospective studies are needed to further explore the association and underlying mechanisms of ORT in these contexts.
RESUMEN
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Asunto(s)
Mitocondrias , Estrés Oxidativo , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Mitocondrias/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Glaucoma/metabolismo , Glaucoma/patologíaRESUMEN
OBJECTIVES: Cochlear implants are an option for children with sensorineural hearing loss who do not benefit from hearing aids. Although bilateral cochlear implantation (CI) has been shown to enhance hearing performance and quality of life, its cost-effectiveness remains unclear. This study aimed to evaluate the cost-effectiveness of bilateral CI compared with bimodal hearing for children with sensorineural hearing loss in Taiwan from both the perspectives of patients and Taiwan's National Health Insurance Administration (TNHIA). DESIGN: A four-state Markov model was utilized in the study, including "use the first internal device," "use the second internal device," "use the third internal device," and "death." Health utility values were obtained from a local survey of health professionals and then adjusted by a scale to reflect both the negative impact of aging on hearing and the time needed to develop the full benefit of treatment in the earliest years of life. The cost data were derived from a caregiver survey, hospital databases, clinical experts, and the TNHIA. The incremental cost-effectiveness ratio (ICER) was calculated over the lifetime horizon and presented as cost per quality-adjusted life year (QALY) to evaluate the cost-effectiveness of simultaneous bilateral CI, sequential bilateral CI, and bimodal hearing. In addition, one-way sensitivity analyses and probabilistic sensitivity analyses were conducted to investigate the impact of uncertainty and the robustness of the model. RESULTS: The base-case analysis showed that children with bilateral CI gained more QALYs while incurring more costs when compared with those with bimodal hearing. From the TNHIA perspective, compared with bimodal hearing, the ICER of simultaneous bilateral CI was New Taiwan Dollars 232,662 per QALY whereas from the patient perspective, the ICER was New Taiwan Dollars 1,006,965 per QALY. Moreover, simultaneous bilateral CI dominated sequential bilateral CI from both perspectives. Compared with bimodal hearing, the ICER of sequential bilateral CI did not exceed twice the gross domestic product per capita in Taiwan from either perspective. One-way sensitivity analysis demonstrated that the utility gain of bilateral CI compared with bimodal hearing was the most impactful parameter from both perspectives. Probabilistic sensitivity analysis confirmed the robustness of the base-case analysis results. CONCLUSIONS: Our findings reveal that bilateral CI was cost-effective when using the threshold of one to three times the 2022 gross domestic product per capita in Taiwan from both the TNHIA and patient perspectives. Future research incorporating cost and effectiveness data from other dimensions is needed to help decision-makers assess the cost-effectiveness of bilateral CI more comprehensively.
RESUMEN
BACKGROUND: Dysfunctional uterine peristalsis seems to play a pivotal role in hindering embryo implantation among women diagnosed with adenomyosis. This research aims to investigate whether administering an oxytocin receptor antagonist during a frozen embryo transfer (FET) cycle using a hormone replacement therapy (HRT) protocol can enhance in vitro fertilization (IVF) outcomes for infertile women affected by adenomyosis. METHODS: Between January 2018 and June 2022, our reproductive center conducted IVF-FET HRT cycles for infertile women diagnosed with adenomyosis. Propensity score matching was employed to select matched subjects between the two groups in a 1:1 ratio. Following this, 168 women received an oxytocin receptor antagonist during FET, constituting the study group, while the matched 168 women underwent FET without this antagonist, forming the control group. We conducted comparative analyses of baseline and cycle characteristics between the two groups, along with additional subgroup analyses. RESULTS: The study group exhibited notably lower rates of early miscarriage compared to the control group, although there were no significant differences in clinical pregnancy rates, ongoing pregnancy rates, and live birth rates between the two groups. Multivariate analysis revealed a negative correlation between the use of oxytocin receptor antagonists and early miscarriage rates in women with adenomyosis. Subgroup analyses, categorized by age, infertility types, and embryo transfer day, showed a substantial decrease in early miscarriage rates within specific subgroups: women aged ≥ 37 years, those with secondary infertility, and individuals undergoing day 3 embryo transfers in the study group compared to the control group. Furthermore, subgroup analysis based on adenomyosis types indicated significantly higher clinical pregnancy rates, ongoing pregnancy rates and live birth rates in the study group compared to the control group among women with diffuse adenomyosis. CONCLUSIONS: Administering an oxytocin receptor antagonist during FET may reduce the early miscarriage rates in women with adenomyosis.
Asunto(s)
Aborto Espontáneo , Adenomiosis , Transferencia de Embrión , Fertilización In Vitro , Infertilidad Femenina , Índice de Embarazo , Puntaje de Propensión , Receptores de Oxitocina , Humanos , Femenino , Transferencia de Embrión/métodos , Adulto , Embarazo , Adenomiosis/complicaciones , Adenomiosis/tratamiento farmacológico , Fertilización In Vitro/métodos , Aborto Espontáneo/epidemiología , Aborto Espontáneo/prevención & control , Receptores de Oxitocina/antagonistas & inhibidores , Infertilidad Femenina/terapia , Infertilidad Femenina/etiología , Infertilidad Femenina/epidemiología , Estudios Retrospectivos , Criopreservación , Terapia de Reemplazo de Hormonas/métodos , Antagonistas de Hormonas/uso terapéutico , Antagonistas de Hormonas/administración & dosificaciónRESUMEN
OBJECTIVES: To translate and validate the Chinese version of the Speech, Spatial, and Qualities of Hearing Scale (SSQ) for children with hearing impairment (C-SSQ-C) and for their parents (C-SSQ-P). DESIGN: We translated the SSQ for children into Chinese and verified its readability and comprehensibility. A total of 105 participants with moderate-to-profound hearing loss (HL) and 54 with normal hearing were enrolled in the validation process. The participants with HL were fitted with bilateral hearing aids, bimodal hearing, or bilateral cochlear implants. The C-SSQ-P was administered to the parents of participants aged 3 to 6.9 years, and the C-SSQ-C was administered to participants aged 7 to 18 years. The internal consistency, test-retest reliability, and validity were evaluated for both questionnaires. RESULTS: Both C-SSQ-P and C-SSQ-C demonstrated high internal consistency (Cronbach's α >0.8) and good validity (generalized linear model revealed significant negative relationships between the C-SSQ-P subscales with aided better-hearing threshold [ ß = -0.08 to -0.12, p ≤ 0.001] and between the C-SSQ-C subscales with worse-hearing threshold [ ß = -0.13 to -0.14, p < 0.001]). Among the children with HL, the participants with bilateral cochlear implants had demonstrated better performance than those with bimodal hearing and bilateral hearing aids, as evidenced by the highest mean scores in three subscales. CONCLUSIONS: Both C-SSQ-P and C-SSQ-C are reliable and valid for assessing HL in children and adolescents. The C-SSQ-P is applicable in evaluating young children aged 3 to 6.9 years after a 7-day observation period, while the C-SSQ-C is appropriate for children and adolescents aged 7 to 18 years.
Asunto(s)
Implantes Cocleares , Audífonos , Pérdida Auditiva , Padres , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Estudios de Casos y Controles , China , Pérdida Auditiva/rehabilitación , Pruebas Auditivas/métodos , Reproducibilidad de los Resultados , Percepción del Habla , Encuestas y Cuestionarios , Traducciones , LenguajeRESUMEN
BACKGROUND: Ovarian aging is characterized by the accumulation of free radicals, leading to tissue damage and affecting reproductive health. Intravascular laser irradiation of blood (ILIB, using a low-energy He-Ne laser) is known for its efficacy in treating vascular-related diseases by reducing free radicals and inflammation. However, its impact on ovarian aging remains unexplored. This study aimed to investigate the effects of ILIB on oxidative stress and energy metabolism in aging ovaries. METHODS: Genetic analysis was conducted on 75 infertile patients with aging ovaries, divided into ILIB-treated and control (CTRL) groups. Patients underwent two courses of laser treatment, and clinical parameters were evaluated. Cumulus cells were collected for the genetic analysis of oxeiptosis, glycolysis, and the tricarboxylic acid (TCA) cycle. RESULTS: The analysis of gene expression patterns revealed intriguing findings in ILIB-treated patients compared to the untreated group. Notably, ILIB treatment resulted in significant upregulation of oxeiptosis-related genes AIFM1 and NRF2, suggesting a potential protective effect against oxidative stress-induced cell death. Furthermore, ILIB treatment led to a downregulation of glycolysis-associated gene hexokinase 2 (HK2), indicating a shift away from anaerobic metabolism, along with an increase in PDHA levels, indicative of enhanced mitochondrial function. Consistent with these changes, ILIB-treated patients exhibited elevated expression of the key TCA cycle genes citrate synthase (CS), succinate dehydrogenase complex subunit A (SDHA), and fumarate hydratase (FH), signifying improved energy metabolism. CONCLUSION: The findings from this study underscore the potential of ILIB as a therapeutic strategy for mitigating ovarian aging. By targeting oxidative stress and enhancing energy metabolism, ILIB holds promise for preserving ovarian function and reproductive health in aging individuals. Further research is warranted to elucidate the underlying mechanisms and optimize the application of ILIB in clinical settings, with the ultimate goal of improving fertility outcomes in women experiencing age-related ovarian decline.
RESUMEN
BACKGROUND: Recessive GJB2 variants, the most common genetic cause of hearing loss, may contribute to progressive sensorineural hearing loss (SNHL). The aim of this study is to build a realistic predictive model for GJB2-related SNHL using machine learning to enable personalized medical planning for timely intervention. METHOD: Patients with SNHL with confirmed biallelic GJB2 variants in a nationwide cohort between 2005 and 2022 were included. Different data preprocessing protocols and computational algorithms were combined to construct a prediction model. We randomly divided the dataset into training, validation, and test sets at a ratio of 72:8:20, and repeated this process ten times to obtain an average result. The performance of the models was evaluated using the mean absolute error (MAE), which refers to the discrepancy between the predicted and actual hearing thresholds. RESULTS: We enrolled 449 patients with 2184 audiograms available for deep learning analysis. SNHL progression was identified in all models and was independent of age, sex, and genotype. The average hearing progression rate was 0.61 dB HL per year. The best MAE for linear regression, multilayer perceptron, long short-term memory, and attention model were 4.42, 4.38, 4.34, and 4.76 dB HL, respectively. The long short-term memory model performed best with an average MAE of 4.34 dB HL and acceptable accuracy for up to 4 years. CONCLUSIONS: We have developed a prognostic model that uses machine learning to approximate realistic hearing progression in GJB2-related SNHL, allowing for the design of individualized medical plans, such as recommending the optimal follow-up interval for this population.
Asunto(s)
Conexina 26 , Pérdida Auditiva Sensorineural , Aprendizaje Automático , Humanos , Conexina 26/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Femenino , Masculino , Adulto , Niño , Adolescente , Persona de Mediana Edad , PreescolarRESUMEN
BACKGROUND: Copy number variations (CNVs) have emerged as significant contributors to the elusive genetic causality of inherited eye diseases. In this study, we describe a case with optic atrophy and a brain aneurysm, in which a de novo CNV 3q29 deletion was identified. CASE PRESENTATION: A 40-year-old female patient was referred to our department after undergoing aneurysm transcatheter arterial embolization for a brain aneurysm. She had no history of systemic diseases, except for unsatisfactory best-corrected visual acuity (BCVA) since elementary school. Electrophysiological tests confirmed the findings in retinal images, indicating optic nerve atrophy. Chromosomal microarray analysis revealed a de novo deletion spanning 960 kb on chromosome 3q29, encompassing OPA1 and six neighboring genes. Unlike previously reported deletions in this region associated with optic atrophy, neuropsychiatric disorders, and obesity, this patient displayed a unique combination of optic atrophy and a brain aneurysm. However, there is no causal relationship between the brain aneurysm and the CNV. CONCLUSION: In conclusion, the optic atrophy is conclusively attributed to the OPA1 deletion, and the aneurysm could be a coincidental association. The report emphasizes the likelihood of underestimating OPA1 deletions due to sequencing technology limitations. Recognizing these constraints, healthcare professionals must acknowledge these limitations and consistently search for OPA1 variants/deletions in Autosomal Dominant Optic Atrophy (ADOA) patients with negative sequencing results. This strategic approach ensures a more comprehensive exploration of copy-number variations, ultimately enhancing diagnostic precision in the field of genetic disorders.
Asunto(s)
Aneurisma Intracraneal , Atrofia Óptica , Femenino , Humanos , Adulto , Mutación , Variaciones en el Número de Copia de ADN , Aneurisma Intracraneal/genética , Atrofia Óptica/genética , Fenotipo , Cromosomas , Linaje , GTP Fosfohidrolasas/genéticaRESUMEN
Cuproptosis is a recently discovered mode of cell death that has garnered attention due to its association with various diseases. However, the intricate genetic relationship between cuproptosis and ovarian aging has remained largely unexplored. This study aimed to bridge this knowledge gap by leveraging data sets related to ovarian aging and cuproptosis. Through comprehensive bioinformatics analyses, facilitated by R software, we uncovered FDX1 as a potential cuproptosis-related gene with relevance to ovarian aging. To gain insights into FDX1's role, we conducted spatial transcriptome analyses in the ovaries of both young and aged female mice. These experiments revealed a significant reduction in FDX1 expression in the aging group compared to the young group. To substantiate these findings at the genetic level, we turned to clinical infertility biopsies. Impressively, we observed consistent results in biopsies from elderly infertile patients, reinforcing the link between FDX1 and ovarian aging. Moreover, we delved into the pharmacogenomics of ovarian cell lines and discovered that FDX1 expression levels were intricately associated with heightened sensitivity to specific small molecule drugs. This observation suggests that modulating FDX1 could potentially be a strategy to influence drug responses in ovarian-related therapies. In sum, this study marks a pioneering effort in identifying FDX1 as a cuproptosis-related gene implicated in ovarian aging. These findings hold substantial promise, not only in shedding light on the underlying mechanisms of ovarian aging but also in positioning FDX1 as a potential diagnostic biomarker and therapeutic target. With further research, FDX1 could play a pivotal role in advancing precision medicine and therapies for ovarian-related conditions.
RESUMEN
First-line treatment of multiple myeloma, a prevalent blood cancer lacking a cure, using anti-CD38 daratumumab antibody and lenalidomide is often inadequate due to relapse and severe side effects. To enhance drug safety and efficacy, an antibody-drug conjugate, TE-1146, comprising six lenalidomide drug molecules site-specifically conjugated to a reconfigured daratumumab to deliver cytotoxic lenalidomide to tumor cells is developed. TE-1146 is prepared using the HighDAR platform, which employs i) a maleimide-containing "multi-arm linker" to conjugate multiple drug molecules creating a drug bundle, and ii) a designed peptide with a Zn2+-binding cysteine at the C-termini of a reconfigured daratumumab for site-specific drug bundle conjugation. It is shown that TE-1146 remains intact and effectively enters CD38-expressing tumor cells, releasing lenalidomide, leading to enhanced cell-killing effects compared to lenalidomide/daratumumab alone or their combination. This reveals the remarkable potency of lenalidomide once internalized by myeloma cells. TE-1146 precisely delivers lenalidomide to target CD38-overexpressing tumor cells. In contrast, lenalidomide without daratumumab cannot easily enter cells, whereas daratumumab without lenalidomide relies on Fc-dependent effector functions to kill tumor cells.
Asunto(s)
Anticuerpos Monoclonales , Inmunoconjugados , Lenalidomida , Mieloma Múltiple , Mieloma Múltiple/tratamiento farmacológico , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/química , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones , Animales , Modelos Animales de EnfermedadRESUMEN
Purpose: This study investigated the clinical characteristics of patients with PROM1-related inherited retinal diseases (IRDs). Methods: Patients diagnosed with IRDs who had mutations in PROM1 were identified at Linkou Chang Gung Memorial Hospital and Kaohsiung Medical University Hospital in Taiwan. Information on clinical characteristics and best-corrected visual acuity was recorded. Color fundus (CF) images, fundus autofluorescence photography (FAF), spectral-domain optical coherence tomography (SD-OCT), and electroretinograms (ERGs) were analyzed to examine patient phenotypes. PROM1 variants were detected using whole exome sequencing and verified by Sanger sequencing. Results: Fourteen patients from nine families with PROM1-related IRDs were analyzed. Most patients exhibited chorioretinal atrophy in the macular area, with or without extramacular involvement on CF. Similarly, hypo-autofluorescence confined to the macular area, with or without extramacular involvement, was present for most patients on FAF. Furthermore, SD-OCT revealed outer retinal tubulations and focal or diffuse retinal thinning. ERGs showed variable findings, including maculopathy with normal ERG, subnormal cone response, and extinguished rod and cone responses. We detected five variants of the PROM1 gene, including c.139del, c.794del, c.1238T>A, c.2110C>T, and c.1117C>T. Conclusions: In this study, we evaluated 14 Taiwanese patients with five PROM1 variants. Additionally, incomplete penetrance of heterozygous PROM1 variants was observed. Furthermore, patients with autosomal dominant PROM1 variants had lesions in the macular area and the peripheral region of the retina. SD-OCT serves as a useful tool for early detection of PROM1-related IRDs, as it captures certain signs of such diseases.
Asunto(s)
Degeneración Macular , Degeneración Retiniana , Humanos , Retina/patología , Degeneración Retiniana/genética , Degeneración Macular/diagnóstico , Células Fotorreceptoras Retinianas Conos , Mutación , Electrorretinografía , Tomografía de Coherencia Óptica/métodos , Antígeno AC133/genéticaRESUMEN
Inherited retinal dystrophies (IRDs) are a group of heterogeneous diseases caused by genetic mutations that specifically affect the function of the rod, cone, or bipolar cells in the retina. Electroretinography (ERG) is a diagnostic tool that measures the electrical activity of the retina in response to light stimuli, and it can help to determine the function of these cells. A normal ERG response consists of two waves, the a-wave and the b-wave, which reflect the activity of the photoreceptor cells and the bipolar and Muller cells, respectively. Despite the growing availability of next-generation sequencing (NGS) technology, identifying the precise genetic mutation causing an IRD can be challenging and costly. However, certain types of IRDs present with unique ERG features that can help guide genetic testing. By combining these ERG findings with other clinical information, such as on family history and retinal imaging, physicians can effectively narrow down the list of candidate genes to be sequenced, thereby reducing the cost of genetic testing. This review article focuses on certain types of IRDs with unique ERG features. We will discuss the pathophysiology and clinical presentation of, and ERG findings on, these disorders, emphasizing the unique role ERG plays in their diagnosis and genetic testing.
RESUMEN
Recessive variants in GJB2 are the most important genetic cause of sensorineural hearing impairment (SNHI) worldwide. Phenotypes vary significantly in GJB2-related SNHI, even in patients with identical variants. For instance, patients homozygous for the GJB2 p.V37I variant, which is highly prevalent in the Asian populations, usually present with mild-to-moderate SNHI; yet severe-to-profound SNHI is occasionally observed in approximately 10% of p.V37I homozygotes. To investigate the genomic underpinnings of the phenotypic variability, we performed next-generation sequencing of GJB2 and other deafness genes in 63 p.V37I homozygotes with extreme phenotypic severities. We identified additional pathogenic variants of other deafness genes in 5 of the 35 patients with severe-to-profound SNHI. Furthermore, we conducted case-control association analyses for 30 unrelated p.V37I homozygotes with severe-to-profound SNHI against 28 p.V37I homozygotes with mild-to-moderate SNHI, and 120 population controls from the Taiwan Biobank. We found that the severe-to-profound group had a higher frequency of the crystallin lambda 1 (CRYL1) variant (rs14236), located upstream of GJB2, than the mild-to-moderate and Taiwan Biobank groups. Our results demonstrated that pathogenic variants in other deafness genes and a possible modifier, the CRYL1 rs14236 variant, may contribute to phenotypic variability in GJB2-realted SNHI, highlighting the importance of comprehensive genomic surveys to delineate the genotype-phenotype correlations.
RESUMEN
Ferroptosis, a recently discovered form of cell death, has been implicated in various diseases. However, the genetic relationship between ferroptosis and ovarian aging has not been thoroughly investigated through informatics analysis. In this study, we conducted bioinformatics analysis using ovarian aging and ferroptosis datasets to identify potential ferroptosis-related genes using R software. The expression levels of these genes at different ages were analyzed using the GTEx public database. To validate these findings at the genetic level, we performed clinical infertility biopsies. Bioinformatics analysis of a mouse ovary dataset revealed significantly higher expression of Tfrc, Ncoa4, and Slc3a2 in the aging group compared to the young group, while Gpx4 showed the opposite pattern. Consistent results were observed in biopsies from clinically aged infertile patients. This study is the first to identify a ferroptosis-related gene associated with ovarian aging, highlighting its potential as a diagnostic biomarker.
Asunto(s)
Ferroptosis , Infertilidad , Animales , Ratones , Femenino , Humanos , Anciano , Relevancia Clínica , Ferroptosis/genética , Ovario , Envejecimiento/genética , BiopsiaRESUMEN
Hearing loss is a common sensory disorder in newborns. Early intervention with assistive devices benefits children's auditory and speech performance. This study aimed to measure the health utilities of children with bilateral severe-to-profound hearing impairment with different assistive devices. The descriptions of four hypothetical health states were developed, and their utility values were obtained from healthcare professionals via the visual analogue scale (VAS) and time trade-off (TTO) methods. Thirty-seven healthcare professionals completed the TTO interview and were included in the analysis. The mean utility scores obtained via VAS were 0.31 for no assistive devices, 0.41 for bilateral hearing aids, 0.63 for bimodal hearing, and 0.82 for bilateral cochlear implants. As for the utility scores obtained via TTO, mean values were 0.60, 0.69, 0.81, and 0.90, respectively. None of the four groups had the same VAS- or TTO-elicited utility (p < 0.001). The post hoc test results showed that the difference was significant between any two groups (all p < 0.05). In conclusion, this study elicited health utility of bilateral hearing impairment with different assistive devices using the VAS and TTO methods. The utility values obtained provide critical data for future cost-utility analysis and health technology assessment.
RESUMEN
With advancing age, women experience irreversible deterioration in the quality of their oocytes, resulting in reduced fertility. To gain a deeper understanding of the influence of ferroptosis-related genes on ovarian aging, we employed a comprehensive approach encompassing spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsy. This investigation revealed the intricate interactions between ferroptosis and cellular energy metabolism in aging germ cells, shedding light on the underlying mechanisms. Our study involved 75 patients with ovarian senescence insufficiency, and we utilized multi-histological predictions of ferroptosis-related genes. Following a two-month supplementation period with DHEA, Ubiquinol CoQ10, and Cleo-20 T3, we examined the changes in hub genes. Our results showed that TFRC, NCOA4, and SLC3A2 were significantly reduced and GPX4 was increased in the supplement group, confirming our prediction based on multi-omic analysis. Our hypothesis is that supplementation would enhance the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), resulting in increased levels of the antioxidant enzyme GPX4, reduced lipid peroxide accumulation, and reduced ferroptosis. Overall, our results suggest that supplementation interventions have a notable positive impact on in vitro fertilization (IVF) outcomes in aging cells by improving metal ion and energy metabolism, thereby enhancing oocyte quality in older women.