Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701956

RESUMEN

OBJECTIVE: This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS: Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS: Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.


Asunto(s)
Cardiomiopatías , Electroacupuntura , Exosomas , Lipopolisacáridos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Exosomas/genética , Electroacupuntura/métodos , Ratones , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Cardiomiopatías/patología , Cardiomiopatías/genética , Cardiomiopatías/prevención & control , Lipopolisacáridos/toxicidad , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
Molecules ; 29(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38792155

RESUMEN

With the rising incidence of various diseases in China and the constant development of the pharmaceutical industry, there is a growing demand for floxacin-type antibiotics. Due to the large-scale production and high cost of waste treatment, the parent drug and its metabolites constantly enter the water environment through domestic sewage, production wastewater, and other pathways. In recent years, the pollution of the aquatic environment by floxacin has become increasingly serious, making the technology to degrade floxacin in the aquatic environment a research hotspot in the field of environmental science. Metal-organic frameworks (MOFs), as a new type of porous material, have attracted much attention in recent years. In this paper, four photocatalytic materials, MIL-53(Fe), NH2-MIL-53(Fe), MIL-100(Fe), and g-C3N4, were synthesised and applied to the study of the removal of ofloxacin and enrofloxacin. Among them, the MIL-100(Fe) material exhibited the best photocatalytic effect. The degradation efficiency of ofloxacin reached 95.1% after 3 h under visible light, while enrofloxacin was basically completely degraded. The effects of different materials on the visible photocatalytic degradation of the floxacin were investigated. Furthermore, the photocatalytic mechanism of enrofloxacin and ofloxacin was revealed by the use of three trappers (▪O2-, h+, and ▪OH), demonstrating that the role of ▪O2- promoted the degradation effect of the materials under photocatalysis.


Asunto(s)
Estructuras Metalorgánicas , Quinolonas , Contaminantes Químicos del Agua , Estructuras Metalorgánicas/química , Catálisis , Quinolonas/química , Contaminantes Químicos del Agua/química , Fotólisis , Luz , Ofloxacino/química , Procesos Fotoquímicos , Antibacterianos/química , Enrofloxacina/química
3.
J Inflamm Res ; 17: 1823-1837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523680

RESUMEN

Purpose: Acupuncture (ACU) has been demonstrated to alleviate inflammatory pain. Mechanoreceptors are present in acupuncture points. When acupuncture exerts mechanical force, these ion channels open and convert the mechanical signals into biochemical signals. TRPA1 (T ransient receptor potential ankyrin 1) is capable of sensing various physical and chemical stimuli and serves as a sensor for inflammation and pain. This protein is expressed in immune cells and contributes to local defense mechanisms during early tissue damage and inflammation. In this study, we investigated the role of TRPA1 in acupuncture analgesia. Patients and Methods: We injected complete Freund's adjuvant (CFA) into the mouse plantars to establish a hyperalgesia model. Immunohistochemistry and immunofluorescence analyses were performed to determine the effect of acupuncture on the TRPA1 expression in the Zusanli (ST36). We used TRPA1-/- mouse and pharmacological methods to antagonize TRPA1 to observe the effect on acupuncture analgesia. On this basis, collagenase was used to destroy collagen fibers at ST36 to observe the effect on TRPA1. Results: We found that the ACU group vs the CFA group, the number of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 increased significantly. In CFA- inflammatory pain models, the TRPA1-/- ACU vs TRPA1+/+ ACU groups, the paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) downregulated significantly. In the ACU + high-, ACU + medium-, ACU + low-dose HC-030031 vs ACU groups, the PWL and PWT were downregulated, and in carrageenan-induced inflammatory pain models were consistent with these results. We further found the ACU + collagenase vs ACU groups, the numbers of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 were downregulated. Conclusion: These findings together imply that TRPA1 plays a significant role in the analgesic effects produced via acupuncture at the ST36. This provides new evidence for acupuncture treatment of painful diseases.

4.
Chin Med ; 19(1): 35, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419106

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset and progressive development. It is clinically characterized by cognitive impairment, memory impairment and behavioral change. Chinese herbal medicine and acupuncture are important components of traditional Chinese medicine (TCM), and are commonly used in clinical treatment of AD. This paper systematically summarizes the research progress of traditional Chinese medicine natural products and acupuncture treatment of AD, which combined with existing clinical and preclinical evidence, based on a comprehensive review of neuroinflammation, and discusses the efficacy and potential mechanisms of traditional Chinese medicine natural products and acupuncture treatment of AD. Resveratrol, curcumin, kaempferol and other Chinese herbal medicine components can significantly inhibit the neuroinflammation of AD in vivo and in vitro, and are candidates for the treatment of AD. Acupuncture can alleviate the memory and cognitive impairment of AD by improving neuroinflammation, synaptic plasticity, nerve cell apoptosis and reducing the production and aggregation of amyloid ß protein (Aß) in the brain. It has the characteristics of early, safe, effective and benign bidirectional adjustment. The purpose of this paper is to provide a basis for improving the clinical strategies of TCM for the treatment of AD.

5.
Nucleic Acids Res ; 52(D1): D265-D272, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37855663

RESUMEN

Riboswitches are regulatory elements found in the untranslated regions (UTRs) of certain mRNA molecules. They typically comprise two distinct domains: an aptamer domain that can bind to specific small molecules, and an expression platform that controls gene expression. Riboswitches work by undergoing a conformational change upon binding to their specific ligand, thus activating or repressing the genes downstream. This mechanism allows gene expression regulation in response to metabolites or small molecules. To systematically summarise riboswitch structures and their related ligand binding functions, we present Ribocentre-switch, a comprehensive database of riboswitches, including the information as follows: sequences, structures, functions, ligand binding pockets and biological applications. It encompasses 56 riboswitches and 26 orphan riboswitches from over 430 references, with a total of 89 591 sequences. It serves as a good resource for comparing different riboswitches and facilitating the identification of potential riboswitch candidates. Therefore, it may facilitate the understanding of RNA structural conformational changes in response to ligand signaling. The database is publicly available at https://riboswitch.ribocentre.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Riboswitch , Ligandos , Conformación de Ácido Nucleico , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal
6.
Biomed Pharmacother ; 170: 115926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035864

RESUMEN

BACKGROUND: To provide new ideas for the clinical and mechanism research of acupuncture in the treatment of chronic obstructive pulmonary disease (COPD), this study systematically reviews clinical research and the progress of basic research of acupuncture in the treatment of COPD. METHODS: PubMed and Web of Science databases were searched using acupuncture and COPD as keywords in the last 10 years, and the included literature was determined according to exclusion criteria. FINDINGS: Acupuncture can relieve clinical symptoms, improve exercise tolerance, anxiety, and nutritional status, as well as hemorheological changes (blood viscosity), reduce the inflammatory response, and reduce the duration and frequency of COPD in patients with COPD. Mechanistically, acupuncture inhibits M1 macrophage activity, reduces neutrophil infiltration, reduces inflammatory factor production in alveolar type II epithelial cells, inhibits mucus hypersecretion of airway epithelial cells, inhibits the development of chronic inflammation in COPD, and slows tissue structure destruction. Acupuncture may control pulmonary COPD inflammation through the vagal-cholinergic anti-inflammatory, vagal-adrenomedullary-dopamine, vagal-dual-sensory nerve fiber-pulmonary, and CNS-hypothalamus-orexin pathways. Furthermore, acupuncture can increase endogenous cortisol levels by inhibiting the HPA axis, thus improving airway antioxidant capacity and reducing airway inflammation in COPD. In conclusion, the inhibition of the chronic inflammatory response is the key mechanism of acupuncture treatment for COPD.


Asunto(s)
Terapia por Acupuntura , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Enfermedad Pulmonar Obstructiva Crónica/terapia , Inflamación
7.
Biomed Pharmacother ; 166: 115395, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37657259

RESUMEN

In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Humanos , Femenino , Embarazo , Diabetes Mellitus Tipo 2/complicaciones , Triptófano , Homeostasis
8.
Front Neurosci ; 17: 1251470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37732301

RESUMEN

Irritable Bowel Syndrome (IBS) is a complex functional gastrointestinal disorder primarily characterized by chronic abdominal pain, bloating, and altered bowel habits. Chronic abdominal pain caused by visceral Hypersensitivity (VH) is the main reason why patients with IBS seek medication. Significant research effort has been devoted to the efficacy of acupuncture as a non-drug alternative therapy for visceral-hyperalgesia-induced IBS. Herein, we examined the central and peripheral analgesic mechanisms of acupuncture in IBS treatment. Acupuncture can improve inflammation and relieve pain by reducing 5-hydroxytryptamine and 5-HT3A receptor expression and increasing 5-HT4 receptor expression in peripheral intestinal sensory endings. Moreover, acupuncture can also activate the transient receptor potential vanillin 1 channel, block the activity of intestinal glial cells, and reduce the secretion of local pain-related neurotransmitters, thereby weakening peripheral sensitization. Moreover, by inhibiting the activation of N-methyl-D-aspartate receptor ion channels in the dorsal horn of the spinal cord and anterior cingulate cortex or releasing opioids, acupuncture can block excessive stimulation of abnormal pain signals in the brain and spinal cord. It can also stimulate glial cells (through the P2X7 and prokinetic protein pathways) to block VH pain perception and cognition. Furthermore, acupuncture can regulate the emotional components of IBS by targeting hypothalamic-pituitary-adrenal axis-related hormones and neurotransmitters via relevant brain nuclei, hence improving the IBS-induced VH response. These findings provide a scientific basis for acupuncture as an effective clinical adjuvant therapy for IBS pain.

9.
Front Immunol ; 14: 1242640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753078

RESUMEN

Sepsis is a systemic inflammation caused by a maladjusted host response to infection. In severe cases, it can cause multiple organ dysfunction syndrome (MODS) and even endanger life. Acupuncture is widely accepted and applied in the treatment of sepsis, and breakthroughs have been made regarding its mechanism of action in recent years. In this review, we systematically discuss the current clinical applications of acupuncture in the treatment of sepsis and focus on the mechanisms of acupuncture in animal models of systemic inflammation. In clinical research, acupuncture can not only effectively inhibit excessive inflammatory reactions but also improve the immunosuppressive state of patients with sepsis, thus maintaining immune homeostasis. Mechanistically, a change in the acupoint microenvironment is the initial response link for acupuncture to take effect, whereas PROKR2 neurons, high-threshold thin nerve fibres, cannabinoid CB2 receptor (CB2R) activation, and Ca2+ influx are the key material bases. The cholinergic anti-inflammatory pathway of the vagus nervous system, the adrenal dopamine anti-inflammatory pathway, and the sympathetic nervous system are key to the transmission of acupuncture information and the inhibition of systemic inflammation. In MODS, acupuncture protects against septic organ damage by inhibiting excessive inflammatory reactions, resisting oxidative stress, protecting mitochondrial function, and reducing apoptosis and tissue or organ damage.


Asunto(s)
Terapia por Acupuntura , Sepsis , Animales , Humanos , Inflamación/terapia , Nervio Vago
10.
Chin Med ; 18(1): 106, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635258

RESUMEN

BACKGROUND: Sepsis poses a serious threat to human life and health, with limited options for current clinical treatments. Acupuncture plays an active role in treating sepsis. However, previous studies have focused on the neuromodulatory effect of acupuncture, neglecting its network modulatory effect. Exosomes, as a new way of intercellular communication, may play an important role in transmitting acupuncture information. This paper explores the possibility of electroacupuncture-driven endogenous circulating serum exosomes and their carried miRNAs as a potential treatment for sepsis. METHODS: The sepsis mouse model was established by intraperitoneal injection of lipopolysaccharide (LPS) (12 mg/kg, 24 mg/kg), and EA (continuous wave, 10 Hz, intensity 5) or intraperitoneal injection of Acupuncture Exosomes (Acu-exo) were performed before the model establishment. The therapeutic effect was evaluated by survival rate, ELISA, H&E staining and lung wet/dry weight ration (W/D). In vivo imaging of small animals was used to observe the accumulation of Acu-exo in various organs of sepsis mice. LPS was used to induce macrophages in cell experiments, and the effect of Acu-exo on macrophage inflammatory cytokines was observed. In addition, The miRNA sequencing method was further used to detect the serum exosomes of normal and EA-treated mice, and combined with network biology analysis methods to screen possible key targets. RESULTS: EA and Acu-exo reduced the W/D and lung tissue damage in sepsis mice, down-regulated the expression of serum inflammatory cytokines TNF-α and IL-6, and increased the survival rate of sepsis mice. In vivo imaging of small animals found that Acu-exo were accumulated in the lungs of sepsis mice. Cell experiments proved that Acu-exo down-regulated the expression of inflammatory cytokines TNF-α, IL-6 and IL-1ß to alleviate the inflammatory response induced by LPS in macrophages. MiRNA sequencing revealed 53 differentially expressed miRNAs, and network biology analysis revealed the key targets of Acu-exo in sepsis treatment. CONCLUSION: Electroacupuncture-driven endogenous circulating serum exosomes and their carried miRNAs may be a potential treatment for sepsis.

11.
Adv Mater ; 35(49): e2304594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37651555

RESUMEN

The quick diffusion of nanomedicines in the polysaccharide-gel-filling tumor interstitium and precise active targeting are two major obstacles that have not yet been overcome. Here, a poly(L-glutamyl-L-lysine(EK) (p(EK))-camouflaged, doxorubicin (Dox)-conjugated nanomedicine is developed to demonstrate the underlying mechanism of zwitterionic shell in synchronous barrier-penetration and biconditional active targeting. The zwitterionic p(EK) shell liquifies its surrounding water molecules in the polysaccharide gel of tumor interstitium, leading to five times faster diffusion than the pegylated Doxil with similar size in tumor tissue. Its doped sulfonate groups lead to more precise active tumor-targeting than disialoganglioside (GD2) antibody by meeting the dual requirements of tumor microenvironment (TME) pH and overexpression of GD2 on tumor. Consequently, the concentrations of the nanomedicine in tumor are always higher than in life-supported organs in whole accumulation process, reaching over ten times higher Dox in GD2-overexpressing MCF-7 tumors than in life-supporting organs. Furthermore, the nanomedicine also avoids anti-GD2-like accumulation in GD2-expressing kidney in a mouse model. Thus, the nanomedicine expands the therapeutic window of Doxil by more than three times and eliminates tumors with negligible myocardial and acute toxicity. This new insight paves an avenue to design nanodelivery systems for highly precise and safe chemotherapy.


Asunto(s)
Nanomedicina , Neoplasias , Ratones , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Polisacáridos , Microambiente Tumoral
12.
Plant J ; 116(2): 478-496, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37478313

RESUMEN

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.

13.
Biointerphases ; 18(3)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37252857

RESUMEN

Zwitterionic dendrimer is an effective carrier, which can restore the natural conformation of peptide segments for high bioaffinity by a hydrogen bond-induced conformational constraint approach. However, it is still unknown whether the approach is applicable for the dendrimers with different geometric sizes. Therefore, the characteristics of conjugates made from zwitterionic poly(amidoamine) (PAM) and the arginine-glycine-aspartic acid (RGD) peptide were examined to elucidate the effects of the geometric sizes of the PAM dendrimer on the conformational structure and stability of the peptide. The results show that the RGD fragments had almost the same structure and stability when conjugated with PAM(G3, G4, or G5) dendrimers. However, when conjugated with PAM(G1 or G2) dendrimers, the structural stability of these fragments was found to be much worse. Also, the structure and stability of RGD segments conjugated with PAM(G3, G4, or G5) were not affected when additional EK segments were inserted. Moreover, we observed that RGD fragments conjugated with PAM(G3, G4, or G5) dendrimers were structurally stable and similar when the concentration of NaCl was 0.15 and 0.5M. Furthermore, we show that PAM(G3, G4, or G5)-RGD conjugates bind strongly to integrin αvß3.


Asunto(s)
Dendrímeros , Dendrímeros/química , Integrina alfaVbeta3 , Oligopéptidos/química , Simulación por Computador
14.
PLoS One ; 18(4): e0281271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37058517

RESUMEN

As an important engine for high-quality economic development, the digital economy is gradually integrating with the rural logistics industry. This trend is contributing to making rural logistics a fundamental, strategic, and pioneering industry. However, some valuable topics remain unstudied, such as whether they are coupled and whether there is variability in the coupling system across the provinces. Therefore, this article takes system theory and coupling theory as the analytical framework, aiming to better elaborate the subject's logical relationship and operational structure of the coupled system, which is composed of a digital economy subsystem and a rural logistics subsystem. Furthermore, 21 provinces are seen as the research object in China, and the coupling coordination model is constructed, aiming to verify the coupling and coordination relationship between the two subsystems. The results suggest that two subsystems are coupled and coordinated in the same direction, and they feed back and influence each other. During the same period, four echelons are divided and there is variability in the coupling and coordination between the digital economy and rural logistics, according to the coupling degree (CD) and coupling coordination degree (CCD). Findings presented can serve as a useful reference for the evolutionary laws of the coupled system. The findings presented here can serve as a useful reference for the evolutionary laws of coupled systems. Moreover, it further provides ideas for the development between rural logistics and the digital economy.


Asunto(s)
Conservación de los Recursos Naturales , Desarrollo Económico , China , Industrias , Ciudades
15.
J Colloid Interface Sci ; 641: 146-154, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36931213

RESUMEN

Bacterial infection has emerged as a grievous threat to public health, and lots of antibacterial agents were developed to solve this issue. However, enhancing the antibacterial activity of antibacterial agents while reducing their side effects remains a challenge. Herein, a supramolecular antibacterial agent based on the host-guest interaction between cucurbit[7]uril (CB[7]) and chlorhexidine (CHX) was designed. CHX can be encapsulated in the cavity of CB[7] to form a 1:3 host-guest complex (CHX-3CB[7]). It was amazingly found that this supramolecular complex could display higher antibacterial activity than CHX alone. Electrospray mass spectrometry and UV-vis spectra revealed that the introduction of CB[7] promoted the protonation of N-atoms on CHX, resulting in stronger ion interaction with phospholipids and thus enhancing the destruction of the bacterial membrane. Scanning electron microscopy (SEM), surface ζ-potentials and outer/inner membrane integrity assays also reveal that the introduction of CB[7] aggravates the rupture of membrane. What is more, the cytotoxicity and irritation of CHX were decreased by forming the host-guest complex with CB[7]. This work provides a paradigm for enhancing antibacterial activity and reducing side effects of drugs through supramolecular chemistry.


Asunto(s)
Clorhexidina , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Clorhexidina/farmacología , Microscopía Electrónica de Rastreo , Antibacterianos/farmacología
16.
Front Physiol ; 14: 1093925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875034

RESUMEN

Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.

17.
Nucleic Acids Res ; 51(6): 2904-2914, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36840714

RESUMEN

We present crystal structures of a new NAD+-binding riboswitch termed NAD+-II, bound to nicotinamide mononucleotide (NMN), nicotinamide adenine dinucleotide (NAD+) and nicotinamide riboside (NR). The RNA structure comprises a number of structural features including three helices, one of which forms a triple helix by interacting with an A5 strand in its minor-groove, and another formed from a long-range pseudoknot. The core of the structure (centrally located and coaxial with the triplex and the pseudoknot) includes two consecutive quadruple base interactions. Unusually the riboswitch binds two molecules of ligand, bound at distinct, non-overlapping sites in the RNA. Binding occurs primarily through the nicotinamide moiety of each ligand, held by specific hydrogen bonding and stacking interactions with the pyridyl ring. The mode of binding is the same for NMN, NR and the nicotinamide moiety of NAD+. In addition, when NAD+ is bound into one site it adopts an elongated conformation such that its diphosphate linker occupies a groove on the surface of the RNA, following which the adenine portion inserts into a pocket and makes specific hydrogen bonding interactions. Thus the NAD+-II riboswitch is distinct from the NAD+-I riboswitch in that it binds two molecules of ligand at separate sites, and that binding occurs principally through the nicotinamide moiety.


Asunto(s)
Riboswitch , NAD/metabolismo , Ligandos , Niacinamida , ARN
18.
Angew Chem Int Ed Engl ; 62(9): e202217408, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36594796

RESUMEN

Tumor enzyme-responsive charge-reversal carriers can induce efficient transcytosis and lead to efficient tumor infiltration and potent anticancer efficacy. However, the correlations of molecular structure with charge-reversal property, tumor penetration, and drug delivery efficiency are unknown. Herein, aminopeptidase N (APN)-responsive conjugates were synthesized to investigate these correlations. We found that the monomeric unit structure and the polymer chain structure determined the enzymatic hydrolysis and charge-reversal rates, and accordingly, the transcytosis and tumor accumulation and penetration of the APN-responsive conjugates. The conjugate with moderate APN responsiveness balanced the in vitro transcytosis and in vivo overall drug delivery process and achieved the best tumor delivery efficiency, giving potent antitumor efficacy. This work provides new insight into the design of tumor enzyme-responsive charge-reversal nanomedicines for efficient cancer drug delivery.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antígenos CD13/uso terapéutico , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Polímeros/química , Nanopartículas/química , Línea Celular Tumoral , Doxorrubicina/química
19.
Environ Sci Pollut Res Int ; 30(49): 107331-107340, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36565424

RESUMEN

As a new type of pollutant, microplastics have attracted much attention. As the third largest freshwater lake in China, Taihu Lake is characterized by severe eutrophication caused by external pollution and frequent occurrence of cyanobacterial blooms. Although there have been previous investigations into the spatial distribution of microplastics in Taihu Lake, research on the relationships among microplastics, pollutants, and cyanobacterial blooms, as well as the spatiotemporal distribution and changing characteristics of microplastics, is deficient. This study investigated the characteristics of microplastics, pollutants, and cyanobacterial blooms in the surface water and sediments of Taihu Lake. The abundances of microplastics were 0-3.7 items/L in the surface water and 44.42-417.56 items/kg (dry weight) in the sediments. Microplastics are most abundant in the western, southern, and northern lake areas. The northern and western lake areas are severely polluted, and cyanobacterial blooms are prone to occur in these areas. This study found that microplastics exist in the surface water of the southeastern lake area, which is a source of drinking water, and the microplastics may thus have adverse effects on drinking water quality. As the main organisms in the cyanobacterial blooms, Microcystis and microplastics have similar spatial distributions in Taihu Lake and are both affected by wind. Based on a combination of the investigations of this paper with the existing research on the microplastics in Taihu Lake, the spatiotemporal distribution of microplastics was obtained: the abundance of microplastics in surface water has continuously decreased, there are no obvious spatial distribution differences, and the spatial distribution of microplastics in the sediments is the same as that in the surface water.


Asunto(s)
Cianobacterias , Agua Potable , Contaminantes Ambientales , Microcystis , Microplásticos , Plásticos , Monitoreo del Ambiente , Lagos/microbiología , Eutrofización , Calidad del Agua , China
20.
Nucleic Acids Res ; 51(D1): D262-D268, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36177882

RESUMEN

Ribozymes are excellent systems in which to study 'sequence - structure - function' relationships in RNA molecules. Understanding these relationships may greatly help structural modeling and design of functional RNA structures and some functional structural modules could be repurposed in molecular design. At present, there is no comprehensive database summarising all the natural ribozyme families. We have therefore created Ribocentre, a database that collects together sequence, structure and mechanistic data on 21 ribozyme families. This includes available information on timelines, sequence families, secondary and tertiary structures, catalytic mechanisms, applications of the ribozymes together with key publications. The database is publicly available at https://www.ribocentre.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Catalítico , Humanos , Secuencia de Bases , Conformación de Ácido Nucleico , ARN Catalítico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA